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Overview of Work to Date
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Overview of Work to Date (Project #1)

1) Fall 2008 Capstone: “TMR Soft Processor System on an FPGA”

Summary:

Anthony Thomason & Colin Tilleman

Develop an FPGA-based computer system that can recover from emulated
radiation-induced faults using triple modular redundancy of soft processors.

The system will continually service basic peripherals (keyboard & LCD) in
the presence of faults. Upon a fault in a processor, the system will finish its
current operation, reset & resynchronize the three processors, and continue

operation.

Ps2
Keyboard

Lco

Block Diagram

Lab Setup Colin Tony
(Xilinx V5 FPGA)
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Overview of Work to Date (Project #1)

1) Fall 2008 Capstone: “TMR Soft Processor System on an FPGA”
Anthony Thomason & Colin Tilleman

Highlights: - successfully demonstrated to Robert Ray and Clint Patrick at Fall-08 Design Fair
- won 2" place ($500) in the IEEE NW Section Student Paper Contest (April 2009)
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Overview of Work to Date (Project #2)

2) Spring 2009 Capstone: “64 Processor Computing System with Spatial Fault Avoidance”
Pat Kujawa, Dan Dunbar, & David Racek

Summary: Develop an FPGA-based computer system that can recover from emulated
radiation-induced faults using spare processors. The system should contain
64 soft processors. 3 of the processors will be active at any given time and be
running in TMR. Upon a fault, the system will bring a spare processor
online to replace the faulted processor. A GUI should be developed to induce
faults and display the active, faulted, and spare processors. MR
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System Demonstration

« Initial Operation

- Processors 0, 1, and 2 are active (blue) and operating in TMR
- Processors 3-63 provide 61 spare picoBlaze processors (gray)
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System Demonstration

« Soft Fault Recovery
- Processors 0, 1, and 2 are active (blue) operating in TMR
- Processors 0 undergoes a soft fault and then recovers and resynchronizes
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System Demonstration

« Hard Fault Recovery

- Processors 1 undergoes hard fault (induced by GUI, red)
- The system shuts down uP #1 and brings on spare processor uP #3 into TMR
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System Demonstration

Multiple Hard Faults

- Multiple hard faults are present

-uPs 1, 6, and 12 form TMR
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Timing/Area Impact

Soft Fault Recovery (reset, reload variable information)

Timing Overhead

- TMR interrupt 2 clocks
- Reset 2 clocks
- Read variable data from good processors: 128 clocks (2 clks/inst, 64 bytes of RAM)
- Write variable data to reset processor: 128 clocks (2 clks/inst, 64 bytes of RAM)
Total 260 clocks H42.6 us (100 MHz V5 Clock)
MONTANA “Design of a Radiation Tolerant Computing System Based on

STATE UNIVERSITY a Many-Core FPGA Architecture”



Overview of Work to Date (Project #2)

2) Spring 2009 Capstone: “64 Processor Computing System with Spatial Fault Avoidance”
Pat Kujawa, Dan Dunbar, & David Racek

Highlights: - successfully demonstrated to Robert Ray at Spring-09 Design Fair
- demonstrated at 09 Europa Jupiter Systems Mission (EJSM) Instrument Workshop
- published at 2009 MAPLD Conference
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Overview of Work to Date (Project #3)

3) Spring 2009 Capstone: “Dynamic Recovery of 1O Faults using Spare Lines”
Sam Harkness, Devin Mikes, & Jeff Bahr

Summary: Develop an 10 system that can continue to operation when a fault occurs on the
physical lines of the bus (due to radiation strikes or broken conductors). The
system should be able to detect faults and switch the active signals to spare lines
on the bus. A GUI should be developed to monitor which lines of the 10 system
have been faulted.
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Jeff Devin Sam Prototype System Gulr
10 Bus Implemented with Wires (G ree_n—actwe,
between two Virtex-5 FPGAS Red=faulted,

gray=spare)
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Overview of Work to Date (Project #3)

3) Spring 2009 Capstone: “Dynamic Recovery of 1O Faults using Spare Lines”
Sam Harkness, Devin Mikes, & Jeff Bahr

Theory of Operation: -

1) Spare Lines are included on the bus to be used in case of a line failure

2) A Hamming code is used to check for errors on the bus and are transmitted on the bus
3) When an error is detected, the system begins a detect/ & recovery process

- Agent A sends all 1’s

- Agent B looks for all 1’s, logs failures

- Agent A sends all 0’s

- Agent B looks for all 0’s, logs failures

- Agent B sends all 1’s

- Agent A looks for all 1’s, logs failures

- Agent B sends all 0’s

- Agent A looks for all 0’s, logs failures

- The bus lines are remapped into good lines

Total Time = (10 + n + log(n) + spare lines) where n = # of lines on bus

Our system =10 + 18 + 6 + 6 = 40 clocks
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Overview of Work to Date (Project #3)
3) Spring 2009 Capstone:

“Dynamic Recovery of IO Faults using Spare Lines”
Sam Harkness, Devin Mikes, & Jeff Bahr

Highlights: - successfully demonstrated to Robert Ray & Leigh Smith at Fall-09 Design Fair
- currently filing an invention disclosure with MSU (first time for the students)

System Demonstration at
MSU Fall-2009 Design Fair

(Sam Harkness giving Leigh Smith Demo)

10 bus in Tact, GUI
indicates all lines good

Wire pull on line 15, GUI indicates fault
and that a spare has been brought online
MONTANA
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Overview of Work to Date (Project #4)

4) Graduate Research Project: “Many-Core Computing System using Partial Reconfiguration for

(2007-present) fault detection, avoidance, and recovery”
Clint Gauer
Summary: Develop an FPGA-based computer system which can recover from, avoid, and

repair radiation induced faults in both the circuit fabric and configuration
SRAM. The system uses a many-core architecture where three soft processors
run in TMR with n spares. Each processor resides in a partially reconfigurable
tile on the FPGA. Upon a fault, the system brings on a spare processor to
replace the faulted processor (SEU/TID recovery & avoidance). The faulted
tile is then partially reconfigured to repair and re-introduce it as a spare (SEFI
recovery).

Lab Setup

Clint (Virtex-5 FPGA) Block Diagram FPGA Floor plan

(3+13 soft processors) (16 picoBlaze processors)
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Overview of Work to Date (Project #4a)

4) Graduate Research Project: “Many-Core Computing System using Partial Reconfiguration for
(2007-present) fault detection, avoidance, and recovery”
Clint Gauer

System Operation of 3+13 picoBlaze Architecture: Recovery from SEU in Circuit Fabric
(Processor 0)
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Overview of Work to Date (Project #4a)

4) Graduate Research Project: “Many-Core Computing System using Partial Reconfiguration for
(2007-present) fault detection, avoidance, and recovery”
Clint Gauer

System Operation of 3+13 picoBlaze Architecture: Spatial Avoidance of Faulted Tile/uP

SEFI or TID Em

on
Processor 2

Processor 2 has undergone a
fault. Processor 3 is brought
online to replace it
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Overview of Work to Date (Project #4a)

4) Graduate Research Project: “Many-Core Computing System using Partial Reconfiguration for
(2007-present) fault detection, avoidance, and recovery”
Clint Gauer

System Operation of 3+13 picoBlaze Architecture: SEFI Repair using Partial
reconfiguration of faulted tile
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Overview of Work to Date (Project #4b)

4) Graduate Research Project: “Many-Core Computing System using Partial Reconfiguration for
(2007-present) fault detection, avoidance, and recovery”
Clint Gauer

System Operation of 3+1 microBlaze Architecture: Spatial Avoidance of Faulted Tile/uP

Normal Operation
uP 0,1,2 are active
uP 3 is a spare

o = Processors 0, 1, and 2 are
i active and in synch after reset.
Processor 3 is a spare.

ST

=5 g

SEFlorTIDonuP1
uP 3 is brought online

Fault on uP 1\auses uP3to
1l 1 bebrought online toform | .
TMR triplet
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Overview of Work to Date (Project #4)

4) Graduate Research Project: “Many-Core Computing System using Partial Reconfiguration for
(2007-present) fault detection, avoidance, and recovery”
Clint Gauer

Highlights: - published work twice at Military & Aerospace Programmable Logic Devices
(MAPLD) Conference (08 & 09)
- published work twice at IEEE Aerospace Conference (09 & 10 accepted)
- this work will be submitted as Clint’s Masters thesis in May 2010.

System Demonstration in MSU Research Lab 12/14/09

(Clint Gauer giving Robert Ray & Brock LaMeres Demo)
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Overview of Work to Date (Project #5)

4) Graduate Research Project: “Spatial Radiation Sensor”
Brian Peterson, Eric Gowens

Summary: Develop a sensor which can give the location and trajectory of incoming
radiation strikes. This sensor is designed to be used in conjunction with
a many-core computing system. The computer system can use the spatial
radiation information to more effectively avoid faults in the circuit fabric
and repair faults in the configuration SRAM.

LaMeres, Smith, Gowens, and Kaiser Sensor & Packaging Prototype Prototype System
At MSU 12/14/09

MONTANA
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Overview of Work to Date (Project #5)

5) Graduate Research Project: “Spatial Radiation Sensor”
Brian Peterson, Eric Gowens

Highlights: - idea presented at 09 Europa Jupiter Systems Mission (EJSM) Instrument Workshop
- prototype demonstrated to Robert Ray & Leigh Smith at MSU on 12/14/09
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[ Depletion "\ 8
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Aluminum " = = = EJSM Poster Presentation on
oot ARS8l : Radiation Sensor (2009)
Track Sensor Mask Design , :

Theory of Operation

Stacked Sensor chip with
one surface exposed

Selective epoxy
encapsulation of
wirebonds

Printed circuitboard  Die attach Dielectricadhesive

i _ Leigh Smith getting demo at MSU
Trajectory Detection

12/14/09
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Background

« Background
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Motivation

« Radiation has a detrimental effect
on electronics in space environments.

« The root cause is from electron/hole pairs creation
as the radiation strikes the semiconductor
portion of the device and ionizes the material.

radiation Types

- alpha particles (Terrestrial, from packaging/doping)

Metal

Sxldde - Neutrons (Terrestrial, secondary effect from

Galactic Cosmic Rays entering atmosphere)

- Heavy ions (Aerospace, direct ionization)

p-type Si
- Proton (Aerospace, secondary effect)

MONTANA
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Motivation

Two types of failures mechanics are induced by radiation

1) Total lonizing Dose (TID)

« The cumulative, long term ionizing damage to the device materials
« Caused by low energy protons & electrons

2) Single Event Effects (SEE)

« Transient spikes caused by Heavy lons and protons
« Can be both destructive & non-destructive

MONTANA
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Motivation (TID)

1) Total lonizing Dose (TID)

— As the electron/holes try to recombine,
they experience different mobility

4 y
rates (p'n > up) // :
/ ' e.

— Over time, the ionized particles can get

trapped in the oxide or substrate of the

device prior to recombination pype S

] Oxide Substrate

— This can lead to: Breakdown Doping

- Threshold Shifting
- Leakage Current
- Timing Skew

MONTANA
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Motivation (SEES)

2) Single Event Effects (SEEs) Voo

o Radiation

— Transient voltage/current induced in devices
— This can lead to both Non-Destructive and

Destructive effects (\ /

Transient

Non-Destructive Behavior

(]

VSS
Single Event Transient (SET) A transient spike of voltage/current noise, can cause gate switching
Single Event Upset (SEU) A transient captured in a storage device (FF/RAM) as a state change
Single Event Func. Interrupt (SEFI) A fault that cannot be recovered from using a reset.
Multi-Bit Upsets (MBU) Multiple, simultaneous SEUs
Destructive Behavior
Single Event Latchup(SEL) Transient biases the parasitic bipolar SCR in CMOS causing latchup
Single Event Burnout (SEB) Transient causes the device to draw high current which damages part

Single Event Gate Rupture (SEGR)  The energy is enough to damage the gate oxide

MONTANA
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Mitigation of TIDs

1) Current Mitigation Techniques (TID)

- Parts can be “hardened” to TID through:
- layout techniques (sizing of Q_,, enclosed layout)
- guard rings

- substrate doping
- redundant circuitry

- Parts are specified in terms of:

- “the amount of energy that can be tolerated by ionizing particles before
the part performance is out of spec”

- units are given in krad (Si), typically 300krad+
- Shielding Does Help

- low energy protons/electrons can be stopped at the expense of weight

MONTANA
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Mitigation of SEEsS

2) Current Mitigation Techniques (SEES)

- Triple Modular Redundancy (TMR)

D Q Maijority

Voting
D Circuit

Majority
Voting
> —— Circuit

- Reboot/Recovery Sequences

D Q Majority
Voting
Circuit

ki

- Shielding Does NOT eliminate all SEEs

- iImpractical to shield against high energy particles and Heavy lons due to
necessary mass
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Drawback of Mitigation

Radiation Hardening = Slower Performance

- All TID mitigation techniques lead to slower performance
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- TID mitigation DOES NOT prevent SEEs
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FPGASs & Radiation

Radiation Mitigation in FPGAS

- RAM based FPGAs are traditionally soft to radiation

- Fuse-based FPGAs provide some hardness, but give up
the flexibility of real-time programmability

Exploiting Reconfiguration

- The flexibility of FPGAs enables novel techniques to radiation tolerant computing
ex) Dynamic TMR, Spatial Avoidance of TID failures,
- The flexibility of FPGAs is attractive to weight constrained Aerospace applications

ex) Reduction of flight spares, internal spare circuitry
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FPGAS as a Solution?

« Field Programmable Gate Arrays
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- FPGAs have followed Moore’s Law LUT X LUT X LuUT

and now yield comparable processing

power to ASICs
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Many-Core Architecture

Radiation Tolerance Through Architecture

- Redundant, Homogenous, Soft Processors

- At Any Given Time, 3 are configured in
Triple Modular Redundancy (TMR)
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Many-Core Architecture

- Types of Radiation Faults Seen in FPGAs

1) Soft (SEU, SET)
- SEUs that can be recovered from using a reset
2) Medium (SEFI)

- SEUs in reconfiguration memory, can only
be recovered using reconfiguration

3) Hard (TID / Displacement Damage)

- Damage to part of the chip due to TID
or Displacement Damage
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Potential Flight Computer

« microBlaze Soft Processor
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