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Introduction

This workbook contains a series of hands-on lab exercises with digital logic circuits that are designed to reinforce
the material from the textbook. These exercises require a parts kit that contains the components listed in the next
section. Chapters 1-4 use discrete logic gates and basic input/output devices to provide experience with simple logic
circuit synthesis, operation, and interfacing. Chapter 5 introduces a Field Programmable Gate Array (FPGA) board
that allows a digital design to be modeled in VHDL and implemented on an FPGA. This provides exposure to the
modern digital design flow. Chapters 6 and 7 use a combination of discrete parts and the FPGA to provide further
interfacing experience in addition to introducing sequential logic in discrete form. Chapters 8-13 use the FPGA board
exclusively to implement larger designs to fully explore the concepts of digital logic.

Each lab begins with a listing of the objective, learning outcomes, supplies needed, and deliverables. Then in the
Lab Work & Demonstration section, a step-by-step guide is provided to complete the exercise.
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Parts List

The following parts are required to complete all of the lab exercises in this book. The breadboard and the discrete
parts are only used on lab exercises for chapters 1-7. The FPGA board starts to be used in Chapter 5. Chapters 8-13
only use the FPGA board and the Analog Discovery 2.

Qty Image Description Manufacturer Distributor Data
(Mfn Part #) (Distr. Part #) Sheet
1 e® Solderless Digilent Digi-Key
s”e Breadboard (340-002) (1286-1062-ND)
&
1 V\gglndgeﬁgsfsr Global Specialties Digi-Key
Breadboard (WK-2) (BKWK-2-ND)
AND Gates, 2- Texas Instruments Digi-Key
2 Input, 4x per part |  (SN74HCO8N) (296-1570-5-ND) | RataSheet
AND Gates, 3- Texas Instruments Digi-Key
2 Input, 3x per part |  (SN74HC11N) (296-8217-5-ND) | Bata Sheet
AND Gates, 4- Texas Instruments Digi-Key
2 Input, 2x per part (SN74HC21N) (296-8266-5-ND) Data Sheet
OR Gates, 2- Texas Instruments Digi-Key
2 Input, 4x per part |  (SN74HC32N) (296-1589-5-ND) | RataSheet
OR Gates, 3- Texas Instruments Digi-Key
2 Input, 3x per part | (CD74HCA075E) | (296-33088-5-ND) | 2ataSheet



http://www.ti.com/lit/ds/symlink/sn74hc08.pdf
http://www.ti.com/lit/ds/symlink/sn74hc11.pdf
http://www.ti.com/lit/ds/symlink/sn74hc21.pdf
http://www.ti.com/lit/ds/symlink/sn74hc32.pdf
http://www.ti.com/lit/ds/symlink/cd74hc4075.pdf

Parts List

: morers sier | Tosonons | 08Ky | oy
z OS2 | T s | OO |y e
2 mﬁ,D 3%53{):& Te(éﬁ?Tlit(r:uln(;ﬁr)]ts (296%%2?5&0) Data Sheet
2 |I:p/?ul\:,D 25255;’):& Te(éﬁ?@litéuz%ﬁ?ts (296-2?5;5'(2%-ND) Data Sheet
: nongesz | Togsivanmens | ol | o i
z nonges s | Toasivanmens | ooy | o i
z nongas | s |00 |y e
z oo 2o | Temeimrens | DY | s
10 Diserote (WP%T)%I?ERD) (754|?-igi5-9K§-yND) Data Sheet



http://www.ti.com/lit/ds/symlink/sn74hc04.pdf
http://www.ti.com/lit/ds/symlink/sn74hc00.pdf
http://www.ti.com/lit/ds/symlink/sn74hc10.pdf
http://www.ti.com/lit/ds/symlink/sn74hc20.pdf
http://www.ti.com/lit/ds/symlink/sn74hc02.pdf
http://www.ti.com/lit/ds/symlink/sn74hc27.pdf
http://www.ti.com/lit/ds/symlink/cd74hc4002.pdf
http://www.ti.com/lit/ds/symlink/sn74hc74.pdf
http://www.kingbrightusa.com/images/catalog/SPEC/WP710A10LSRD.pdf

Parts List .

Lumex
LED, 7-Segment Opto/Components Digi-Key
L Display Inc. (67-1446-ND) Data Sheet
(LDS-C416RI)
Buzzer, Magnetic, CUI Inc. Digi-Key
1 DC, Single Tone |  (CEM-1205C) (102-1124-ND) Data Sheet
. . CTS .
Switch, slider, Digi-Key
1 SPST, 8-position Electrocomponents (CT2088-ND) Data Sheet
(208-8)
Switch, push- C&K Digi-Key
L button, SPDT (KS12R22CQD) (CKN1595-ND) Data Sheet
1 ge%?g)rBI\é%tvcv)?lrrﬁ Bourns Inc Digi-Key Data Sheet
el ' | (4116R-1-331LF) | (4116R-1-331LF-ND) | ——>——
Isolated
Resistor Network, Bourns Inc Digi-Key
1 9x, SIP, 10k Ohm, (4610X-101- Data Sheet
Bussed 103LF) (4610X-1-103LF-ND)
Resistor, Axial, 1k Yageo Digi-Key
2 Ohm, 1/4 W, 5% | (CFR-25JB-52-1K) (1.0KQBK-ND) Data Sheet
Resistor, Axial, Yageo Didi-Ke
12 150 Ohm, 1/4W, | (CFR-25JB-52- (150(%BK_3,\’|D) Data Sheet
5% 150R)
Resistor, Axial, Yageo Digi-Ke
2 10k Ohm, 1/4 W, (CFR-25JB-52- (10K(%BK-§D) Data Sheet
5% 10K)



http://www.lumex.com/content/files/ProductAttachment/LDS-C416RI.pdf
http://www.cui.com/product/resource/digikeypdf/cem-1205c.pdf
http://www.ctscorp.com/wp-content/uploads/206-208.pdf
http://www.ckswitches.com/media/1342/ks.pdf
http://www.bourns.com/docs/Product-Datasheets/4100R.pdf
http://www.bourns.com/docs/Product-Datasheets/4600x.pdf
http://www.yageo.com/documents/recent/Yageo%20LR_CFR_2013.pdf
http://www.yageo.com/documents/recent/Yageo%20LR_CFR_2013.pdf
http://www.yageo.com/documents/recent/Yageo%20LR_CFR_2013.pdf

Parts List

1 . NPN Transistor, ON Semiconductor Digi-Key Data Sheet
2N3904, 200 mA (2N3904TFR) (2N3904D26ZCT-ND) | =—
Diode, 1N4002, ON Semiconductor Digi-Key
1 1A (1N4002) (IN4OO2FSCT-ND) | Data Sheet
1 Ju&ﬁ;&ﬁs’ MikroElektronika Digi-Key
Female, 10-Pack (MIKROE-511) (1471-1230-ND)
Pin Header, 0.1", 3M Digi-Key
1 Single-Strip, 10- (929834-02-10- (929834E-02-10-ND) Data Sheet
pos RK)
Digi-Key
1 DEO-CV, Cyclone Terasic (P0192-ND) or User
V, FPGA Board (P0192) . Manual
Terasic
(P0192)
Analog Discovery Digi-Key
2 - Portable - (1286-1117-ND) or
) . Digilent Reference
1 Oscilloscope/Logic (410-321) Manual
Analyzer/Power Digilent -
Supply (410-321)



https://www.fairchildsemi.com/datasheets/MM/MMBT3904.pdf
http://www.onsemi.com/pub/Collateral/1N4001-D.PDF
http://multimedia.3m.com/mws/media/43897O/3mtmpinstriphdr-100-100x-100-929-series-ts0769.pdf
http://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=921&FID=f23586755af207055fa8a4c6aaac3198
http://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=921&FID=f23586755af207055fa8a4c6aaac3198
https://reference.digilentinc.com/_media/reference/instrumentation/analog-discovery-2/ad2_rm.pdf
https://reference.digilentinc.com/_media/reference/instrumentation/analog-discovery-2/ad2_rm.pdf

Chapter 1: Analog vs. Digital

Lab 1.1: Introduction to Lab Equipment & Blinking an LED with an AWG

1.1.1 Objective

The objective of this lab is to become familiar with the equipment we will be using for the rest of the lab exercises
and also gain experience with the on/off nature of digital signals. We will use the Arbitrary Waveform Generator (AWG)
of the Analog Discovery to drive a simple LED circuit to turn it on and off. We will also use the oscilloscope function of
the Analog Discovery to view the AWG input and the voltage across the LED.

1.1.2 Learning Outcomes

After completing this lab, you will be able to:

e Breadboard a simple LED-Resistor circuit.

e Use an AWG to output a signal with a specified type, amplitude, offset, and frequency.
e Use an oscilloscope to display a waveform on the screen.

e Describe the on/off behavior of a digital signal.

e Describe the impact that increasing the frequency has on a digital signal.

1.1.3 Parts Needed

e Breadboard + wires.

e Analog Discovery 2.

e 1xred LED, discrete.

e 1x 150 Q axial resistor.

1.1.4 Deliverables
The deliverable(s) for this lab are as follows:

1. Demonstrate the use of the AWG to make an LED blink at 2 Hz (50% of exercise).
2. Produce an oscilloscope measurement of the LED circuit running at 5 MHz (50% of exercise).

1.1.5 Lab Work & Demonstration
1.1.5.1 Using the AWG to make an LED Blink
Breadboard a Simple LED-Resistor Circuit

You are going to build the LED-Resistor circuit in Figure 1.1. The resistor and LED will be connected on your
breadboard. The square wave voltage will come from the Analog Discovery AWG output. For the first deliverable, you
will breadboard this circuit and make the LED blink on and off.

Resistor
Vin AN Vieo
150 Q
AWG
VLOW= Ov N LED
Viign = 3.4v Vyy = HIGH, LED= ON
Vi = LOW, LED= OFF
Figure 1.1

Simple LED-Resistor Circuit
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A breadboard provides a way to electrically connect circuit components without solder. The breadboard consists
of a series of holes designed to accept pins of standard digital logic parts and various switches and LEDs. Within the
breadboard are internal connections that allow components to be electrically connected by inserting pins within the
same hole set. Figure 1.2 shows an overview of the main connection scheme of a breadboard.

The red and blue lines indicate horizontal or
vertical connections that span the length or width
of the breadboard. These are most commonly
used to route power and ground throughout the
breadboard so that circuits in different regions can
gain easy access fo these common signals.

Note that in this picture each red and blue line
indicates the holes that are connected. It does not
indicate that all blue lines are connected or that all
red lines are connected.

These two points are connected
together. But they are not connected to

this one.
]
Each set of 5 horizontal These two points are
holes is connected connected together

together. This allows a
connection between
components by
plugging a pin from
each component into
the same horizontal set.

Figure 1.2
Overview of a Breadboard

For these lab exercises, it will be helpful if all of the vertical red lines are connected together and all of the vertical
blue lines are connected together. This can be accomplished by wiring each red vertical connection into one of the red
horizontal strips along the top and the same for the blue vertical connections. This will allow power to be provided to
the entire board by connecting it into any of the holes on red vertical strips and ground to be provided to the entire
board by connecting it to the any of the holes on the blue vertical strips. Enter wires into your breadboard to electrically
connect the vertical red/blue strips together as shown in Figure 1.3.

Inserting wires between the vertical red strips to
one of the horizontal red strips on the top of the
hreardboard connects all of the holes near the red
lines to be connected.

strips.

All of these connections are now electrically connected.

Figure 1.3
Setting up the Power/Ground Strips of the Breadboard
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The breadboard is now for ready to implement the LED-resistor circuit. The first step is to locate a 150 Q, axial
resistor from your parts kit. The term axial means that the resistor resides on the same axis as the leads that are used
to connect to it. The colors on the resistor's ceramic body indicate the value and tolerance of the resistor. Figure 1.4
shows an image of a 150 Q axial resistor and a standard color code chart. The code uses one color for the first digit
of the resistor value and a second color for the second digit of the resistor value. This is then followed by a color
representing a multiplier to find the final value of the resistor. A 150 Q resistor has a code of brown (1) — green (5) —
brown (10%). This can be thought of as forming the number “15” using the first two colors and then multiplying it by “10”
to get 150. The final color on the resistor is the tolerance. All of the axial resistors in the parts kit are +/-5%, so all
tolerances are indicated with the color gold.

Standard EIA Color Code Table 4 Band: +2%, +5%, and £10%

1st 2nd 3ard 4th
Band \er JBand/ Band
JiD
1st Band 2nd Band 3rd Band 4th Band
(1st tigure) (2nd figure) | (multiplier) (tolerance)
Black 100
Brown 10!
Red 102
[ Yollow |4 | 4 | 10* |
Green 5 - 108
Blue 10*
Violet 107
10°
Gold 10-1 +5%
Sliver ~__ 102 +10%
Chart Provice o By QCRICORD

Figure 1.4
Determining the Value of an Axial Resistor (150 ohm example)

The next step is to locate the red LED from the parts kit and understand its polarity. The term polarity means that
the pins of a part have different functions and that the orientation of the part matters when it is placed into the
breadboard. An example of a part that is not polarized is the 150 Q resistor discussed above. This part can be placed
in a circuit in any orientation and it behaves the same. This is not the case with an LED. For all of the circuits in this
lab manual, we will use LEDs in a forward-biased configuration. This simply means that the current will flow from the
anode to the cathode of the LED. When current flows in this direction, the LED will turn on. Current will not flow in
the opposite manner. What is important when using a discrete LED is to determine which pin is the anode and which
is the cathode. In the discrete LED in our parts kit, the anode is always the longer pin while the cathode is the shorter
pin. Figure 1.5 shows a graphical depiction of the polarity of discrete LED.
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The symbol for an LED indicates which The lengths of the pins on an LED part indicate
pin is the anode and which is the cathode. which pin is the anode and which is the cathode.

® Anode P

When in a forward-
biased configuration,

YZ current flows this
I Q way.

Cathode
T Cathode (lo':ggf';n} «— (shorter pin)

Figure 1.5
Determining the Anode and Cathode of the Discrete LEDs in our Parts Kit

Now that we have the two components for our circuit, we can insert them into the breadboard to form their electrical
connections. Figure 1.6 shows an example of how to breadboard this circuit.

The resistor should be placed so that it straddles

the center gap so that its pins are electrically
isolated.

—— -
) = By placing the pins from the resistor and LED into
E 5 the same 5-hole slot, they are electrically
l‘ a G - connected. The anode of the LED (longer pin)
.= = should be placed in this slot to make connection
- .ﬁ - with the resistor.
_ Lo
. v
-
& - The cathode of the LED (shorter pin) can be
§ connected to ground by placing a wire over to the
E = o= blue vertical strip.
- o
L
L
[

The ground for the circuit will come from the AWG.
The input to the circuit will come from the AWG

Figure 1.6
Wiring the LED-Resistor Circuit

Now that the resistor and LED are in place, we can connect the AWG of the Analog Discovery. An AWG provides
an input signal to a circuit that can have a user-defined shape (i.e., square, sinusoid, triangle, etc.). The amplitude and
offset of the waveform can also be defined. The Analog Discovery has two AWG outputs (W1 and W2). We will be

using W1 in this exercise. The signal labels for the Analog Discovery are located on the plastic body near the main 30-
pin connector. This is shown in Figure 1.7.
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24 +YVWWHTI01 23 456 7

Figure 1.7
Pinout for the Analog Discovery 2

A wire kit is provided with the Analog Discovery that allows easy connections to external circuits. On one side of
the wire kit is the mating connector that plugs into the 30-pin connector on the Analog Discovery’s main body. On the
other end, each signal is brought out to a 0.1” square, female receptacle. This receptacle is ideal for interfacing to a
breadboard using either 0.1” header pins or simple breadboard wires. At this point, plug channel W1 into the
breadboard using a 0.1” header pin to make the input connection shown in Figure 1.1. All electrical circuits need a
ground, or a return path for the circuit to flow back to the source. The Analog Discovery has four ground signals in its
wire kit indicated with the | symbol. At this point, also connect one of the grounds from the Analog Discovery to the
ground of the breadboard. Notice that since we setup our blue vertical strips to all be connected, we can plug in the
Analog Discovery’s ground anywhere on the breadboard. Figure 1.8 shows the connection of the Analog Discovery to
the breadboard containing the LED-resistor circuit. After these connections are made, we are ready to configure the
AWG output to drive the LED circuit to make it turn on and off.

150 ohm resistor
LED

Ground connection for the
Cathode of the LED

AMNALOG
DiscoviRT (5

ADIGILENT

Use the “W1" channel of the Analog Discovery, which is
the AWG output. This will be Viu.

Connect the ground of the Analog Discovery to the
ground of the breadboard using the blue vertical strips.

The leads of the Analog Discovery can be plugged into
the breadboard using 0.1" header pins.

Figure 1.8
Connection between the Analog Discovery and the LED-Resistor Circuit on the Breadboard
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Install the Waveforms 2015 Software to Control the Analog Discovery

Now we want to configure the AWG to drive a square wave that goes from Ov to +3.4v at a frequency of 2 Hz. The
Analog Discovery is controlled using a free application called Waveforms, which can be downloaded from Digilent.com
(http://store.digilentinc.com/). Once on this website, on the left select “Scopes, Instruments, & Circuits”, and then on
the “Waveforms 2015 (Download Only)” product. On the next screen, select “Download Here”. On the next screen
you will find “Latest Downloads” where you can choose “Windows”. The 65MB download will then commence. Once
downloaded, run the *.exe file and the software will be installed.

Once installed, connect your Analog Discovery to your computer using the USB cable provided in the box. The
USB drivers will install automatically. Wait until the drivers are installed before starting the program.

Launch Waveforms (Start —Digilent — Waveforms). The software will automatically recognize the Analog Discovery
and connect. The Waveforms startup window shown in Figure 1.9 will appear.

&Waverorms (new workspace) = [m} X

Workspace Settings Window Help
Welcome|+  Help

Open workspace For more information visit digilentinc.com/waveforms
Scope P pa Observations are welcome on this forum page or via email

Recent; ©
(e
Sunp\ics
—
o
Eslal\clo
O New | save leSave s Analog ICs provided by
@ o [] Open last session on start ANALOG
DEVICES

Trigger PC Discovery2 SN:210321A36DC3  Status: OK | &3

Figure 1.9
Waveforms 2015 Startup Window

Configure the AWG Output of the Analog Discovery

Click on the “Wavegen” tool on the left of the Waveforms window. A new tab will appear in the Waveforms window
called “Wavegen 1”. You will see a graphical image of the waveform that will be created. At this point we want to
configure the AWG to output a square wave with a minimum voltage of Ov, a maximum voltage of +3.4v, at a frequency
of 2 Hz. The values for frequency, amplitude, and offset can either be typed in or entered using the drop-down menus.

The term “amplitude” refers to the amount that a signal swings above and below an “offset”. This means in order
to produce a signal that goes from Ov to +3.4v, we want to set the amplitude to +1.7v with an offset of +1.7v. This can
be thought of as a signal centered at 1.7v that will go above this center by +1.7v (i.e., 1.7v + 1.7v = 3.4v) and go below
this center by +1.7v (i.e., 1.7v - 1.7v = Ov). Set the following values for the Wavegen.

e Type = Square
e Frequency =2 Hz
e Amplitude =17V
e Offset=1.7V
e  Symmetry = 50%
e Phase=0°
Your AWG setup should look like Figure 1.10. Note that the background can be changed from Dark to Light using

the setup gear button in the upper right corner of the waveform. You can also change the thickness of the line. Making
the background light and the line thicker makes taking and printing screenshots easier.


http://store.digilentinc.com/
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M WaveForms (Lab01_Analog_v_Digital) - o X
Workspace Settings Window Help
Welcome Help P Wavegen1 &
File Control Edit Window
B Runall Channels Me synchronization
Channel 1
B>Run [ Enable Simple - i
Type: MSquare - 8 v
Frequency: 2 hz B ' B i e E SHE =T 4.2
Amplitude: 17V d : i
Offset: LIV ;. ,3'7
Symmery: 50 % - H 32
Phase: 0° < i
127
22
F 17
12
07
loz
03
T . il Lice, . vl . 08
ams S0ms 100ms  150ms  200ms  250ms  300ms  350ms  400ms  450ms  S00ms
Trigger PC Discowery2 SN:210321A36DC3  Status: OK &3
Figure 1.10

Waveforms AWG Setup Window

At this point, you should save your workspace to your computer. Click on the menus “Workspace — Save”. Browse
to a location on your computer you wish to save your lab work and click “Save”. You can save the workspace continually
as you configure settings throughout this exercise.

Run the AWG to Make the LED Blink

To run the AWG, you simply press the “Run” button in the Waveforms application. There is a “Run” and “Run All".
The “Run All” is used when there are multiple tools configured. In this case, there is only one tools setup so both
buttons will do the same thing. The LED should now be blinking on and off at a rate of 2 Hz, or 2 times per second.
Take a short video (<5 s) showing the operation of your circuit with the blinking LED. This video satisfies the
requirements for deliverable #1.

1.1.5.2 Measure the Logic Signals in the LED Circuit

Connect the Oscilloscope to Measure the Input and Output Voltages of the Circuit

An oscilloscope is an instrument that displays an electrical signal graphically. It is one of the most commonly used
instruments to debug electrical circuits. The Analog Discovery contains two oscilloscope channels. Each channel has
two wires that must be connected (1+/1- and 2+/2-). The 1- and 2- channels will always be connected to ground for
the exercises in this manual. We want to measure the input and output signals of the LED-resistor circuit. Figure 1.11
shows the connection points for the oscilloscope measurement.

ViN VieD
2+
Chan 2

Y

r1 1l

Figure 1.11
Connection Points for the Oscilloscope Measurement

In order to make these connections, use 0.1” header strips to plug 1+ into the same breadboard strip as the AWG
input and 2+ to the same breadboard strip as the Anode of the LED. The 1- and 2- should be connected to the ground
of the breadboard. Figure 1.12 shows how the connection should look.
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Oscilloscope channel 1 will be used to measure
V. 1+ should be connected to the same point as

the AWG input.
- asvesHE
ADIGILENT :
~ Oscilloscope channel 2 will be used to measure

Vien. 2+ should be connected to the point where
the resistor and LED are connected.

EEAmEATIE

innaner Wb e
P

Oscilloscope channels 1- and 2- should be
connected to the ground of the breadboard.

Figure 1.12
Connection between the Analog Discovery and the LED-Resistor Circuit on the Breadboard

Setup the Oscilloscope of the Analog Discovery

In the Waveforms application, stop the AWG by clicking the Stop button. Click on the “Welcome” tab to go back
to the tool listing. Click on the “Scope” tool. A new tab will appear called “Scope 1". Go to this tab and you'll see a
measurement screen. Both channels of the oscilloscope will be displayed on this screen by default.

On the right side of the screen you'll see the zoom controls. An oscilloscope sets the zoom using divisions. The
vertical axis is always voltage, and is measured in volts/division, or V/div. Each line on the measurement screen is a
division. The offset of the measurement can also be configured. For both channel 1 and 2, set the zoom controls to:

e Offset=0V
¢ Range =1 V/div

On the right side of the screen you'll also see zoom controls for time. Again, both a scaling per division is given
(base) and a horizontal offset (position). Oscilloscope are usually used for signals that are fast enough that they can’t
be observed with the human eye. In this part, we will take a measurement on the LED-resistor circuit when it is running
at a faster frequency (1 kHz) so we need to configure the time zoom accordingly. Configure the time control to:

e Position=0s
e Base =1 ms/div

When signals are too fast to be seen with the human eye, simply displaying what the oscilloscope is measuring on
the screen would result in the entire screen being lit up. To handle displaying fast repetitive signals, an oscilloscope
uses atrigger. A trigger represents an event that occurs on the incoming signal, such as a rising edge passing a certain
voltage level. When this occurs, the oscilloscope positions all of its recorded data on the screen with the trigger moment
located at time=0s. As the oscilloscope continues to run, it will continually trigger and overwrite the data on the screen
with the new set of data positioned with the trigger at time=0s. If the signal is repetitive, the resulting screen will show
a steady waveform in which the characteristics of the signal can be determined. We want to setup the trigger so that
every time Channel 1 has a rising transitions that passes through 2v, the oscilloscope will trigger. Along the top of the
measurement screen there are a variety of trigger settings. Configure these as follows:

e Mode = Auto

e Source = Channel 1
e Condition = Rising
e Level=2V

Run the Oscilloscope to Measure the Input and Output Voltages of the LED-Resistor Circuit

Now we are ready to take an oscilloscope measurement. First, we need to set the frequency of the AWG to 1 kHz
and turn it back on. Go back to the “Wavegen 1” tab, change the frequency to 1 kHz, and press the run button. Now
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go back to the “Scope 1" tab and press run. You will see the waveform in Figure 1.13. Again, the background and line
thickness of the oscilloscope measurement screen can be changed using the gear setup button in the upper right corner
of the screen.

M WaveForms (Lab01_Analog_v_Digital)
s e el

— eorgs

= | || o ] @ = =

vap [remmpmpp—— Sunm it ©

Figure 1.13
Oscilloscope Measurement of 1 kHz Signals

Observe the Impact of Increasing the Frequency of the Input on Vieo

Begin increasing the frequency of the input square wave. This can be done in real time without stopping the AWG
or oscilloscope. As you increase the frequency of the AWG, you'll need to decrease the time/div setting on the
oscilloscope. As an example, increase the frequency of the AWG to 5 kHz. In the oscilloscope, change the time/div
(upper right of oscilloscope screen) to 0.2 ms/div so that the square waves are visible.

At 5 kHz, Vin and Viep still look like nice square waves. Increase the AWG frequency to 500 kHz and decrease
the oscilloscope time base to 1 us/div . Notice that the first signs of ViLep distortion are beginning. Now increase the
AWG frequency to 5 MHz with an oscilloscope time base of 0.2 us/div. At 5 MHz the signals are severely distorted.
This illustrates that a digital signal can’t have its frequency increased indefinitely while still maintaining its pure on/off
signal shape.

Take a screenshot of your 5 MHz oscilloscope measurement for your records. In Windows you can do this using
either the Snipping Tool or by using the Print Screen button on your keyboard to place the screen on your clipboard
and then pasting it into Paint. Save the image in JPG format with a descriptive file name. This image satisfies the
requirements for deliverable #2.

Lab 1.1 After completing this lab exercise, can you:

e Breadboard a simple LED-Resistor circuit?

e Use an arbitrary waveform generator to output a signal with a specified type,
amplitude, offset, and frequency?

e Use an oscilloscope to display a waveform on the screen?

e Describe the on/off behavior of a digital signal?

e Describe the impact that increasing the frequency has on a digital signal?
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Lab 2.1: 2-Bit Counter from the AWG and Introduction to Logic Analysis

2.1.1 Objective

The objective of this lab is to demonstrate how logic signals can be interpreted as numbers. This lab will also allow
you to gain more familiarity with the arbitrary waveform generator and introduce logic analysis. You will drive two
square waves from the AWG into two LED circuits on your breadboard. You will configure the AWG outputs to drive a
2-bit binary counter pattern by adjusting the phase of the signals. You will then measure the LED signals using the
logic analyzer within the Analog Discovery. You will then view the 2-bit binary information in both binary and decimal
formats within the logic analyzer waveform.

2.1.2 Learning Outcomes

After completing this lab, you will be able to:

e Use an arbitrary waveform generator to output a binary counter pattern by adjusting the phase of the
outputs.

e Use the logic analyzer to measure the digital values of a set of signals.

e View the logic analyzer measurement in different bases to see how the logic signals are interpreted as
numbers.

2.1.3 Parts Needed

e Breadboard + wires.

e Analog Discovery 2.

e 2xred LEDs, discrete.

e  2x 150 Q axial resistors.
2.1.4 Deliverables

The deliverable(s) for this lab are as follows:

1. Demonstrate the use of the AWG to create a 2-bit binary counter displayed on two LEDs (50% of
exercise).

2. Produce a logic analyzer measurement displaying the counter value in both binary and decimal (50% of
exercise).

2.1.5 Lab Work & Demonstration

2.1.5.1 Using an AWG to Create a 2-bit Binary Counter Pattern

Breadboard Two LED-Resistor Circuits

You are going to build the LED-resistor circuits shown in Figure 2.1. Locate 2x red, discrete LEDs and 2x, 150 Q
axial resistors from your parts kit and breadboard the circuit. The square wave voltages will come from the two AWG
channels (W1 and W2) from the Analog Discovery. Connect the W1 and W2 outputs of the Analog Discovery to your
circuits using either 0.1” header pins or breadboard wires.

17
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R1
W1 AN Vbito
AWG Channel 1 150 O
Viow= Ov
Vuign = 3.4v Sze D1
F=1Hz Vyy = HIGH, LED= ON
Phase = 0 deg Vin = LOW, LED= OFF
R2
W2 AN Vit
AWG Channel 2 150 Q
VLQW =Qv
VHIGH =3.4v SZ§ D2
F=05Hz V), = HIGH, LED= ON
Phase = 90 deg Viy = LOW, LED= OFF
Figure 2.1

LED-Resistor Circuits to Display Binary Counter on LEDs

Figure 2.2 shows how the circuit will look after it is wired.

Use the “W1" channel of the Analog
Discovery to drive in the LSB at 1 Hz.

Use the “W2" channel of the Analog
Discovery to drive in the MSB at 0.5 Hz.

Connect the ground of the Analog Discovery to
the ground of the breadboard.

Figure 2.2
Wiring the Two LED-Resistor Circuits

Setup the AWG to Output a 2-Bit Binary Pattern

The Analog Discovery’s AWG can output two voltages with different frequencies. By configuring these channels
as square waves with one output exactly twice the frequency of the other, a 2-bit binary counter pattern can be created.
The only caveat is that the least significant bit (LSB) needs to be phase shifted so that the pattern counts 00 — 01 — 10
-11-00 ....



Lab 2.1: 2-Bit Binary Counter & Logic Analysis + 19

Launch the Waveforms application. Click on the Wavegen button to bring up the AWG control window. In this
exercise we will be using both AWG channels of the Analog Discovery. By default, only Channel 1 appears when the
Wavegen tool is launched. In order to turn on Channel 2, use the “Channels” dropdown menu and select “2”. Once
this is selected, two waveform plots will appear. To the right of the “Channels” dropdown menu there is another menu
that controls whether the two signals are synchronized or unsynchronized. Choose “Synchronized” in this dropdown
menu. Now configure both waveforms with the following settings.

e Type = Square

e Amplitude =17V
e Offset=1.7V

e  Symmetry = 50%
e Phase=0°

We will use channel 1 (W1) to drive the LSB of the counter pattern. Set the frequency of Channel 1to 1 Hz. We
will use channel 2 (W2) to drive the MSB of the counter pattern. Set the frequency of Channel 2 to 0.5 Hz.

The time zoom and time offset for both waveform images can be configured independent of each other. In order
to visualize the phase relationship between the two waveforms, we want to set both waveforms to be on the same time
scale. Inthe upper right corner of each waveform window, there are gear setup buttons. Use these buttons to configure
the time settings for both plots to the following.

e Scale = Manual
e Length = 0.2 s/div
e Start=05s

At this point we have the AWG configured nearly correct; however, the pattern that will be driven does not follow
a 00-01-10-11 counting pattern. Instead, you will see the pattern in Figure 2.3

MWaveForms (new workspace) = o X
Workspace Settings Window Help By default, thiS doeS nOt give a

Welcome + Help P> Wavegen 1 . .
Eile Control Edit Window blnary up countlng pattern
P>Runall Channels - Synchronized - ' RepeatTrigger
Channel 1
P> Run Enable Simple - &
Type: "LiSquare G & v
Frequency: 1Hz - : 4.2
Amplitude: 1.7V “ 3.2

=&= 0 1 | 0 | 1 ¢|pit0o(LSB)

05s 09s 13s 17s 21s 2.5s
Channel 2

B> Run Enable Simple o &
Type: T Square . ©§ v
Frequency: 0.5 Hz “ : 4 ! : 4.2
Amplitude: 1.7V al N
e — 1 0 o) 1 - bit1 (MSB
Symmetry: 50 % v
Phase: 0° v
s -0.8
05s 09s 13s 1.7s Z1s 25s
Trigger PC Discovery2 SN:210321A36DC9 Status: OK &
Figure 2.3

AWG Setup to Drive a 2-Bit Counter, but with the Incorrect Phase Relationship

In order to get the correct pattern, we need to configure the phase of channel 2 to 90°. Make this change and you
will now see the pattern in Figure 2.4.
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W WaveForms (new workspace) . . 1 o =
i il B Adjusting the phase of channel 2

Welcome = Help B Wavegen 1 = provides counter pattern
| Eile Control Edit Window

P>Runall Channels = Synchronized - None =2 Wa\!: none A conflnuous K| |nf\m!e RepeatTrigger
Channel 1

P Run Enable Simple 8

| Frequency: 1Hz 4 | J ; 4.2
Amplitude: 1.3V “ [ 3

. 01 01 | bit0 (LSB)

I : i i -0.8
0.5s 09s 13s 17s 21s 25s

Channel 2

P> Run Enable Simple -
| Frequency: 0.5 Hz ~ [ : : Y 4.2
| Amplitude: 17V M| =
s = ] : 0 O 1 1 1 I
Symmetry: 50 % b |

Phase: 90° ~ f

. i ; -0.8
05s 09s 13s 17s 21s 25s
Trigger PC Discovery2 SN:210321A36DCS  Status: OK &
Figure 2.4

AWG Setup to Drive a 2-Bit Counter, but with the Correct Phase Relationship

Run the AWG to Output a 2-Bit Binary Pattern

Now press the “Run All” button. You should see a 2-bit binary pattern on the LEDs of your breadboard. Take a
short video (<5 s) showing the operation of your circuit with the blinking LEDs. This video satisfies the requirements
for deliverable #1.

2.1.5.2 Logic Analyzer Measurement of the Counter Pattern

Connect the Logic Analyzer to your Circuit

A logic analyzer is an instrument similar to an oscilloscope in that it graphically displays the signal being measured.
While an oscilloscope displays the detailed analog wave shape of the signal being measured, a logic analyzer only
displays the digital value of the signal. Since only 1's and 0’s are stored in a logic analyzer, the circuitry to implement
the instrument is much simpler than an oscilloscope. This allows the logic analyzer to have more channels in the same
amount of area as an oscilloscope. The Analog Discovery has a 16-channel logic analyzer. A logic analyzer also uses
a trigger to control how the data being measured is displayed similar to an oscilloscope. The difference is that the logic
analyzer can trigger on logic values across all signals being measured.

We want to measure the logic values of the 2-bit counter that was implemented on the breadboard. The logic
channels of the Analog Discovery are labeled 0-15. Connect channels 0 and 1 of the logic analyzer to the LED-resistor
circuit as shown in Figure 2.5.
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R1
W1 = Vbito
AWG Channel 1 IVV\’ .
150 Q Logic
Viow= 0v Channel O
VHign = 3.4v Sze D1
F=1Hz Vi = HIGH, LED= ON
Phase = 0 deg Vin = LOW, LED= OFF
W2 2 V
bit1
AWG Channel 2 MW ®-
150 Q Logic
Viow = 0v Channel 1
VHIGH =3.4v SZQ,' D2
F=05Hz Vy = HIGH, LED= ON
Phase = 90 deg Vi = LOW, LED= OFF
Figure 2.5

Connection Points for the Logic Analyzer to Measure the 2-Bit Counter

Figure 2.6 shows how the breadboard will look after connecting the logic analyzer.

NALOG
gtscoven\f

ADIGILENT
N

Use logic analyzer channel “0" of the
Analog Discovery to measure the LSB.

Use logic analyzer channel “1" of the
Analog Discovery to measure the MSB.

Figure 2.6
Connecting the Logic Analyzer to the LED-Resistor Circuits
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Configure the Logic Analyzer to Measure the 2-Bit Counter

In Waveforms, click on the “Welcome” button to go back to the main workspace screen. Start the logic analyzer
by clicking on the “Logic” button on the left. The logic analyzer screen will appear. The first thing to do is define the
signals that we are measuring. On the left of the screen there is a section that shows all of the signals in the
measurement. Select the “Click to Add channels” button and then choose “Bus”. A bus is the term used to describe a
group of signals. For digital signals, we can think of a bus as either data or a number formed by individual bits. In this
lab exercise, the two bits being driven to the LEDs by the AWG will form a 2-bit number, or a 2-bit bus.

In the options window that appears, name the bus Count. On the left side of the window there is a list of available
logic analyzer channels to include in the measurement. Highlight the two channels “DIO 1" and “DIO 0" by selecting
them while holding down the Shift key. Once selected, click on the + sign to add them to the box on the right. These
two signals will now form the 2-bit bus called Count in the measurement. Change the format to binary. Leave all other
settings the same for now. Your settings should look like Figure 2.7.

W Add Bus X
Name: |Count

DIO 5 A+ [pio1

DIO 4 DIO 0

DIO 3

Do 2 g

Enable: Nane 2| |Low

Clock: None | [Rising
Format: Binary

Endianness: MSB 7

MSB [ B

LSB b H

Add Cancel

Figure 2.7

Logic Analyzer Bus Setup

Click the “Add” button to close the options window. In the logic waveform screen you'll now see the Count bus in
addition to the individual bits of the bus.

Just as with an oscilloscope, a logic analyzer is typically used to measure signals that are faster than the human
eye can see. Go back to the Wavegen tab and increase the frequency of Channel 1 to 1 kHz and Channel 2 to 500
Hz. This will allow us to examine more data at once. Make sure the AWG is still running.

Run the Logic Analyzer to Measure the 2-Bit Counter Pattern

Go back to the Logic tab. Change the time Base zoom to 1ms/div (if not already set to this). Press the “Run”
button. You should now see data scrolling on the screen. Press the “Stop” button to examine the results. You should
see the same results as shown in Figure 2.8. Note that the Count bus shows the two bits grouped together as a 2-bit
number. The individual bits shown are identical to the individual channels of the AWG.
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Figure 2.8

Logic Analyzer Measurement of 2-Bit Counter Displayed in Binary Format

Now change the format of the bus to interpret the 2-bits as a decimal number. Double click on the Count label and

the settings dialog will appear again. Change the format to decimal and press “OK”. You will now see the results as
shown in Figure 2.9.

MWaveForms (new workspace) = a X
Workspace Settings Window Help
Welcome + Help @ Wavegen 1 P Logicl =
File Control View Window a
B single P run Buffer: 100 2| Mode: AI..It.O -/ None Position: ﬁ EA
Run: Repeated - Source: Digital & Base: 1 ms/div v
*+ .= . H. T
Name [o] | Stop 2000 samples at 200 kHz | 2017-04-26 08:51:12.312 5

.)( 1 P . B P B P b b Pk b B Rk b b
opse) mx | | | | L | | L[

X~ -5ms -4 ms -3 ms -2ms -1ms 0ms 1ms 2ms 3ms 4 ms 5ms
Trigger PC Discovery2 SN:210321A36DC9 Status: OK &
Figure 2.9

Logic Analyzer Measurement of 2-Bit Counter Displayed in Decimal Format
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The logic analyzer displaying the 2-bits in decimal is an example of how digital signals are representations of data
and as long as the receiving system knows how to interpret the representation, the data can be successfully transmitted.
In this case, the logic analyzer is set to treat the 2-bits as a positive decimal number. This is just one example of how
to interpret the data. Other coding schemes can be used to transmit information such as signed numbers, characters,
or other forms of data.

Take a screenshot of the logic analyzer measurement displaying the 2-bits in decimal format. Save the image in
JPG format with a descriptive file name. This image satisfies the requirements for deliverable #2.

Lab 2.1 After completing this lab exercise, can you:

e Use an AWG to create a 2-bit binary counting pattern?

e Use alogic analyzer to measure the digital values of signals in a circuit?

e View the logic analyzer results in different bases to see how logic signals are
interpreted as numbers?
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Lab 3.1: Digital Circuit Operation

3.1.1 Objective

The objective of this lab is to demonstrate the DC and AC operation of digital circuits. This lab will also introduce
the power supply functionality of the Analog Discovery. You are going to breadboard three simple logic circuits from
the 74HC logic family (an inverter, an AND gate, and an OR gate). You will provide power to each of the gates using
the power supply output (+3.4v) of the Analog Discovery. You will then perform a series of activities to examine the
operation of the logic gates. First, you will determine the input/output specifications for the 74HC logic family by reading
a datasheet. Next, you will use the arbitrary waveform generator to drive in all possible input codes to the gates and
observe the input/output behavior of the gates using the logic analyzer. Next, you will observe the analog input/output
behavior of the inverter using the oscilloscope and examine the impact of an input signal that does not meet the DC
specifications of the receiving gate. Finally, you will measure the propagation delay and transition time of the inverter
using the oscilloscope.

3.1.2 Learning Outcomes

After completing this lab, you will be able to:

Read and understand the pin out, DC, and AC specifications of a basic gate from its data sheet.
Breadboard basic gates from the 74HC logic family.

Use the power supply output of the Analog Discovery to provide +3.4v to your breadboard.

Measure the DC behavior of an inverter, AND gate, and OR gate using an AWG and logic analyzer.
Measure the AC behavior of an inverter using the AWG and oscilloscope.

Measure the impact of an input signal that does not meet the DC specifications of the receiving gate.
Measure the switching characteristics of a basic gate using an AWG and an oscilloscope.

3.1.3 Parts Needed

Breadboard + wires.

Analog Discovery 2.

1x 74HCO04 inverter IC.

1x 74HCO08 2-input AND gate IC.
1x 74HC32 2-input OR gate IC.

3.1.4 Deliverables

The deliverable(s) for this lab are as follows:

1.
2.

w

Provide the operating specifications for a 74HC logic gate by reading its data sheet (5% of exercise).
Demonstrate the DC operation of a 74HC inverter, AND gate, and OR gate using the AWG and logic
analyzer (45% of exercise).

Demonstrate the AC operation of a 74HC inverter using the AWG and oscilloscope (15% of exercise).
Demonstrate the impact of an input signal not meeting the minimum input specifications of the 74HC
inverter (15% of exercise).

Measure the AC characteristics of the 74HC inverter (transition time and propagation delay) using the
AWG and oscilloscope (20% of exercise).

25
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3.1.5 Lab Work & Demonstration
3.1.5.1 Determine the Operating Specifications of a 74HC Logic Gate from its Data Sheet

You are going to breadboard three basic gates from the 74HC logic family. Whenever you are going to use a new
part, the first thing you do is examine its data sheet. Retrieve the data sheets for the 74HCO04 inverter, 74HC08 AND
gate, and the 74HC32 OR gate. We will be using the dual inline package (DIP). Examine the pinouts for each part.
Notice that the pinouts for these parts includes Vcc and GND. Recall that logic gates are active devices, meaning that
they require power to operate. In order for the logic gates perform correctly, you must provide a power supply and
ground to each part. We will do this using the power supply feature of the Analog Discovery.

The next information you should find is the DC operating conditions for these gates. We will be providing
Vcec=+3.4v. For this logic family, the best-case output (Von-max and Vor-min) and input (Vin-max and Vi-min) conditions will
be a HIGH=Vcc=+3.4v and LOW=GND=0v. We are more interested in finding the worst-case specifications (VoH-min,
VoL-max, Vin-min @and ViL-max). Use the data sheets to determine the following DC specifications for each part. Note that
these specifications are the same for all three parts since they are from the same logic family so you can find these for
just the HCO4 inverter. Also note that since these specifications are only provided for supply voltages of Vcc=+2v,
+4.5v, and +6v, you will need to interpolate the information to estimate the values for Vcc=+3.4v (see chapter 3 in the
textbook). For the output specification, you can use the +/- 20uA test condition. Record the following specifications.

Worst Case Outputs VoH-min
VoL-max =

Worst Case Inputs ViH-min
ViL-max =

The next information you should find is the AC operating conditions for the parts. Go to the switching characteristics
portion of the data sheet for the 74HCO04 inverter. Record the maximum values for t,a and t: for our power supply
voltage. Note that again these specifications are given for three different power supplies, none of which we are using.
Instead of interpolating, you can infer what the values will be for a Vcc=+3.4v. Notice how the values for Vcc=+6v and
Vcc=+4.5v are very close to each other while the values for Vcc=+2v is much larger. This is showing how when
Vcc=+2v, the part is on the edge of not operating properly. The value for Vcc=+3.4v will be only slightly higher than for
Vec=+4.5v. Record your best guess of what the values will be based on the values given for Vcc=+6v and Vcc=+4.5.
Note that these represent the maximum value that you should see, but the value depends greatly on what load is
connected to it. We will measure these values for our load type in a later activity.

Maximum Propagation Delay tpd =
Maximum Transition Time tt =

Record your values from above electronically. If you printed this page and manually wrote in the values, you can
either scan the page or take a photo of the page and save as a JPG. If you recorded the values electronically, take a
screen shot of your values and save in JPG format. This image satisfies the requirements for deliverable #1.

3.1.5.2 DC Operation of 74HC Logic Gates

Breadboard the Three Base Gate Circuits

Now place the 74HC04, 74HCO08, and 74HC32 parts on your breadboard. First connect their power supply and
ground pins to the supply rails on your breadboard using jumper wires. The power supply for your breadboard will
come from the power supply output of the Analog Discovery (V+). This supply should be wired into your power supply
rails of your breadboard (red) using a 0.1” pin or jumper wire. Note that the Analog Discovery has two power supplies,
V+ and V-. We will not be using the V- supply. The ground should be wired into your ground rails of your breadboard
(blue) using a 0.1” pin or jumper wire. This will allow easy access to power and ground for each of the basic gates.

You are going drive in the input codes for each of the three gates using the AWG. Since there are only two AWG
channels on the Analog Discovery, you will need to do this one gate at a time (INV, then AND, then OR). For the
inverter, you will connect the AWG channel W1 to pin 1 of the 74HCO04 part. For the AND gate and OR gate you will
connect W1 to the A input of the gate and W2 to the B input of the gate. You will need to connect the output of the gate




Lab 3.1: Digital Circuit Operation «

27

being measured to the input of another gate on its same package to provide a typical load configuration (see the
following figure). You will connect the logic analyzer to the input(s) and output of each gate in turn in order to observe
the DC logic behavior. Figure 3.1 shows the breadboard setup and wiring diagram for the basic gate circuits.
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Wiring Diagram for Breadboarding the Basic Gate Circuits
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Setup the Power Supply

You now need to setup the power supply for the gates. Launch the Waveforms 2015 software. In the main screen,
click on the “Supplies” icon. This brings up the power supply window. The Analog Discovery has two power supply
channels (V+ and V-). V+ can take on positive supply values while V- can take on negative supply values. The
channels can be individually enabled by clicking on the channel labels. To turn on the power supply, you click on the
“Run” button. Configure the voltage for V+ to +3.4v by typing the value in on the right dialog of the window. Turn off
V- by clicking on the label “Negative Suply (V-)". Click on the “Run” button at the top to power your breadboard. You
should see the window in Figure 3.2 once configured. At this point your logic gates are all powered.

W WaveForms (new workspace) = o x
Workspace Settings Window Help
Welcome + Help 0 Suppies ]
File Control Window
‘ Master Enable is On
‘ Positive Supply (V+) On Voltage: [3.av v
Negative Supply (V-) Off Vottage: [1v ~
USB powered, alowing up to 500 mW total or 700 mA output per channel.
Trigger PC Discovery2 SN:210321A36DC9 Status: OK 's:";;
Figure 3.2

Power Supply Setup

Setup the AWG

We are now going to configure the AWG to output a square wave to drive the inputs to the logic gates. Recall that
since the AWG of the Analog Discovery only has two channels, we will drive and measure each gate individually. We
will first setup the inverter measurement completely and then repeat the process for the AND gate and OR gate.

In the Waveforms window, click on the “Welcome” button to go back to the main screen. Click on “WaveGen” and

configure Channel 1 of the AWG as follows:

e Type = Square

e Frequency = 1 kHz
e Amplitude =17V
o Offset=1.7V

e  Symmetry = 50%
e Phase=0°

Press the “Run” button. You are now driving in a logic signal into the input of the inverter.
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Setup the Logic Analyzer

We are now going to take a DC measurement on the inverter. The term “DC” refers to that we are not looking at
the transition region of the signal but rather its value once it reaches steady state. So while technically the signals we
are measuring are toggling between a logic HIGH and LOW, we call this measurement DC because we are really only
concerned about the signal value once it reaches and stays at its final value.

In the Waveforms window, click on the “Welcome” button to go back to the main screen. Click on “Logic” and
configure the logic analyzer to measure the input to the inverter on DIO 0 and the output of the inverter on DIO 1. When
you add the channels to observe, you will click on the “+” button and then select “Signal”. This is as opposed to creating
a Bus as in the prior lab. Add DIO 0 first and name it “A”. Add DIO 1 next and name it “F". Change the Position to Os
and the Base to 0.5 ms/div.

Run the Logic Analyzer Measurement on the Inverter

Press the “Run” button on the logic analyzer. You should see the input and output of the inverter on the screen.
Press the “Stop” button to analyze the results. Hint: You can also click the “Single” button to simply fill the screen with
data instead of running and then stopping. You should see the waveforms as shown in Figure 3.3.

MWaveForms (new workspace) — [mi x

Workspace Settings Window Help

Welcome + Help @ Supplies P Wavegen 1 P Logic1 &
File Control View Window
Buffer: 100 * Mode: Normal | None Position:  |0s ZI'&,:
Singl Ri
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Name 10 | Ready |2()UU samples at 400 kHz | 2017-05-04 12:43:59.247 T &

X~ -2.5ms -2ms -1.5ms -1 ms -0.5 ms 0ms 0.5 ms 1ms 1.5ms 2ms 2.5ms
Trigger PC Discovery2 SN:210321A36DC9 Status: OK | &
Figure 3.3

Logic Analyzer Measurement of the Inverter

At this point you have successfully wired an inverter, provided it power and ground, provided a logic input, and
measured its proper operation by observing the input and output. Take a screenshot of the logic analyzer measurement
for your records and save in a JPG format. This image partially satisfies the requirements for deliverable #2.

Setup and Run the Logic Analyzer Measurement on the AND Gate

You are now going to repeat this measurement on the AND gate. You first need to connect both channels of the
AWG to the inputs of the AND gate on pins 1 and 2. You should then configure the AWG to output a 2-bit counting
pattern (refer to lab 2.1 for how to setup the AWG to produce a counting pattern). You will next need to connect logic
analyzer channels 1 and 2 to the inputs of the AND gate and channel 3 to the output of the AND gate. Configure the
logic analyzer to have DIO 0 observe the channel 1 input, DIO 1 observe the channel 2 input, and DIO 2 observe the
output of the AND gate. Label DIO 0 “A”, DIO 1 “B”, and DIO2 “F". Run the logic analyzer. You should see the
measurement shown in Figure 3.4.
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Logic Analyzer Measurement of the 2-Input AND Gate

At this point you have successfully wired a 2-input AND gate, provided it power and ground, provided logic inputs,
and measured its proper operation by observing the inputs and output. Take a screenshot of the logic analyzer
measurement for your records and save in a JPG format. This image partially satisfies the requirements for
deliverable #2.

Setup and Run the Logic Analyzer Measurement on the OR Gate

You now are going to repeat this measurement on the OR gate. You will need to move the AWG channels to the
inputs of the OR gate. You will also need to move the three channels of the logic analyzer to the OR gate. Since you
have already setup the Analog Discovery, you should be able to just press “Single” on the logic analyzer. You should
see the measurement shown in Figure 3.5.
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Figure 3.5

Logic Analyzer Measurement of the 2-Input OR Gate

At this point you have successfully wired a 2-input OR gate, provided it power and ground, provided logic inputs,
and measured its proper operation by observing the inputs and output. Take a screenshot of the logic analyzer
measurement for your records and save in a JPG format. This image partially satisfies the requirements for
deliverable #2. To full satisfy deliverable #2 you will produce three images (INV, AND, OR).
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3.1.5.3 AC Operation of 74HC Logic Gates

We now want to begin looking at the AC characteristics of a logic gate. The term “AC” refers to when we look at
the signals as they transition between a logic 1 and 0. We do this type of measurement with an oscilloscope. Connect
channel 1 of the AWG back to the input of the inverter. Connect the 1+ oscilloscope channel of the Analog Discovery
to the input to the inverter and the 2+ channel to the output of the inverter. Connect the oscilloscope references 1- and
2- to the ground of your breadboard.

In Waveforms, click on the Welcome button to go back to the main screen. Click on the “Scope” button. Setup
the trigger for the oscilloscope as follows:

e Mode: Auto

e Source: Channel 1
e Rising

e level:1.7V

Press the “Run” button on the oscilloscope. You should now see the input and output signals for the inverter.
Zoom in horizontally by setting the time base to 0.2 ms/div. Zoom vertically by setting the range of both channels to 1
V/div. On the left of the screen, you can drag/drop the triangles for each channel to shift them up or down. Position
the waveforms so you can clearly see the input and output. You should see a measurement similar to Figure 3.6.
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Figure 3.6

Oscilloscope Measurement of the Input and Output of the Inverter

This measurement shows the analog nature of the behavior of the inverter. Take a screenshot of the oscilloscope
measurement for your records and save in a JPG format. This image satisfies the requirements for deliverable #3.

3.1.5.4 Observing the Impact of an Input Signal that Doesn’t Meet the Minimum Specifications.

Now let's observe the impact when the input does not meet the minimum input specifications that you determined
for the first deliverable of this lab. Let's keep the input centered at +1.7v but begin shrinking its amplitude. Keep the
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oscilloscope measurement running while you reduce the amplitude of channel 1 of the AWG. Note that you can undock
a tool window in Waveforms by clicking the icon in the upper right corner of any window.

As you reduce the input signal amplitude, you'll first notice that the output of the inverter remains a quality digital
signal for quite a while. Itis only once the amplitude gets down to ~0.3 V does the output begin to show signs of failure.
You will begin to see the output pulses have different magnitudes and behave erratically. This can be seen in Figure
3.7. When the input amplitude is reduced further the output ultimately go to Ov.
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Impact of an Input Signal Not Meeting the Minimum Specifications

Set the AWG amplitude back to the point where the output is exhibiting erratic behavior. Take a screenshot of the
measurement for your records and save in a JPG format. This image satisfies the requirements for deliverable #4.

3.1.5.5 Measuring the AC Characteristics of the Inverter

Finally, let's look at the propagation delay and transition time of the inverter. In the oscilloscope, configure the
zoom so that the waveforms are larger by setting the vertical range to 0.5 V/div. Drag the waveforms vertically so that
they are on top of each other and in the center of the screen. Zoom in horizontally by setting the time Base = 0.05
us/div. To get the trigger point in the center of the measurement by setting the time Position = 0s. You should see a

measurement similar to Figure 3.8.
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Measurement of the AC Characteristics of the Inverter

The oscilloscope tool has a feature called “HotTrack”. This provides a cursor that automatically measures time
and voltage of the waveforms on the screen. To turn on HotTrack, click on the icon in the upper right corner of the
measurement section. The icon looks like a ruler. Once on, you'll see a cursor that you can drag left and right and
view various time and voltage information about your measurement. Use HotTrack to determine the propagation delay
(i.e., the time difference between when the input and output cross the 50% point of their transition) and the transition
time (i.e., the time it takes the output to go from 10% to 90% of its logic swing). Note that HotTrack doesn’t automatically
produces these results. You will need to manually move the cursor to the specific points on the waveform, record the
time manually, and then perform a subtraction.

Take a screenshot of your oscilloscope measurement with HotTrack on for your records and save in a JPG format.
This image satisfies the requirements for deliverable #5.

Lab 3.1 After completing this lab exercise, can you:

e Determine the pinout, DC, and AC specification of a logic gate from its data sheet?

e Use a power supply, AWG, and logic analyzer to verify the DC operation of a basic
gate?

e Measure the AC operation of a basic gate with an oscilloscope?

e Describe the impact of an input signal that doesn’t meet the minimum input
specifications?

e Use an oscilloscope to measure the propagation delay and transition time of a logic
gate?
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Chapter 4: Combinational Logic Design

Lab 4.1: 3-Input Prime Number Detector using Canonical Forms

4.1.1 Objective

The objective of this lab is to gain experience with logic synthesis using canonical sum-of-products (SOP) and

canonical product-of-sums (POS) forms.

You will design a 3-input prime number detector using both forms and

demonstrate the proper (and equivalent) operation. You will also gain experience with addressing fan-in constraints of
real logic circuits. You will also build an LED driver circuit that will allow you to drive in different codes into your detector
using switches and observe both the input and output logic values on LEDs.

4.1.2 Learning Outcomes

After completing this lab, you will be able to:

Implement an LED driver circuit that will be used to provide the inputs of your logic circuits.
Design, breadboard, and test 3-input combinational logic circuits using a canonical SOP form?
Design, breadboard, and test 3-input combinational logic circuits using a canonical POS form?
Understand how fan-in constraints can be addressed in real-world circuits.

4.1.3 Parts Needed

Breadboard + wires.

Analog Discovery 2.

1x, 8-position SPST slider switch.

1x, resistor network, 9-position, 10-pin SIP, 10 kQ, bussed.
1x, resistor network, 8-position, 16-pin DIP, 330 Q, isolated.
5x, red LEDs, discrete.

2x, 74HCO04 inverter ICs (1x used for LED driver, 1x used for SOP/POS circuits).
2x, 74HC4075 3-input OR ICs.

1x, 74HC32 2-input OR gate IC.

2x, 74HC11 3-input AND gate ICs.

1x, 74HC21 4-input AND gate IC.

4.1.4 Deliverables

The deliverable(s) for this lab are as follows:

1.
2.

Demonstrate the proper operation of an LED driver circuit (30% of exercise).

Provide your design steps to synthesize a canonical SOP logic circuit to implement a 3-input prime
number detector (10% of exercise).

Demonstrate the proper operation of a 3-input prime number detector implemented with a canonical
SOP form (25% of exercise).

Provide your design steps to synthesize a canonical POS logic circuit to implement a 3-input prime
number detector (10% of exercise).

Demonstrate the proper operation of a 3-input prime number detector implemented with a canonical
POS form (25% of exercise).

35
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4.1.5 Lab Work & Demonstration
4.1.5.1 Implement an LED Driver Circuit
Breadboard an LED Circuit

In this exercise we need a way to create all possible input codes for a 3-input combinational logic circuit in order
to verify proper operation of the design. We can drive in the inputs using the 8-position DIP switch provided in the lab
kit. We would also like to be able to observe the input codes on LEDs. We would also like to observe the output of our
combinational logic circuit on an LED. In order to accomplish this, you are going to build the following LED driver circuit.
This circuit allows up to 4 input codes to be created and displayed on LEDs. This circuit uses a dedicated inverter to
drive the LEDs so that the inputs to the circuit-under-test are not loaded excessively. This circuit will be used on future
labs so plan on leaving it on your breadboard. A schematic of the LED driver circuit is shown in Figure 4.1.

When this switch is ON (CLOSED), it connects V¢ to the input of the inverter (logic 1). The
inverter outputs a logic 0 (GND) turning the LED ON.

When this switch is OFF (OPEN), the input of the inverter is connected to GND through the
10k Resistor (logic 0). The inverter outputs a logic 1 (Vec) turning the LED OFF.

The inputs to combinational logic circuits can be driven by
connecting wires to these nodes. The input code will drive
these circuits in addition to being displayed on the LEDs.

Vee Vee
A Discrete 4
P Ty : A WT— ,

Red LEDs

: 74HCO4 -
e A P o
: : 13300 V%
. > R,

-

Individual
330Q
Resistor
Array

8-Pin
DIP Switch
(ON=Closed)

= 10-pin Bussed The output of a combinational logic
Resistor Array circuit can be connected to this node
10k Q to show the logic values on an LED.

Figure 4.1
LED Driver Circuit Schematic
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Figure 4.2 shows an example layout on your breadboard.

W m wes e W0 owe
Resistor Inverters connection LEDs (Note this is pl-acec! in
Array point Array the opposite direction

as the input LEDs)

Figure 4.2
LED Driver Circuit Layout

Test your LED Driver Circuit

Test your LED driver circuit. You will need connect Vcc and GND from the Analog Discovery to your breadboard.
You will then need to launch Waveforms and configure the power supply output to generate +3.4v for your breadboard.
Once powered, you should be able to toggle DIP switches 1-4 and see the corresponding ON/OFF pattern on the LEDs.
You won't be able to test the output LED until you connect the output of a logic circuit to it. This will be done in the next
sections.

Take a short video (<5 s) showing the proper operation of your LED driver circuit. This video satisfies the
requirements for deliverable #1.

4.1.5.2 Design a 3-Input Prime Number Detector using a Canonical SOP Form

You are now going to design a logic circuit that will assert its output when the decimal value of the 3-bit input is a
prime number. A 3-bit input can represent numbers from 010 to 710. Within this range, the values 2, 3, 5, and 7 are
considered prime numbers. Notice that in a canonical SOP form, you will need a 3-input AND gate for each input row
with an output of 1. That means you will need 4x, 3-input AND gates. These are provided in your lab kit. You will feed
the corresponding outputs of the 4x AND gates into a 4-input OR operation; however, your lab kit only provides 2-input
and 3-input OR gates. This means you have encountered a fan-in constraint. You need to figure out a way to
overcome this issue by manipulating the circuit. Consider using the associative property on the OR operation. You
are going to design the SOP prime number detector by hand. The steps in this design process are as follows:

e Create a 3-input truth table with the desired output for each input code.

e Create a minterm list from the truth table.

e Create a canonical SOP logic expression from the truth table / minterm list.

e Draw the logic diagram of the SOP logic expression.

e Map the logic operations into the available ICs in your parts kit.

e Address any fan-in issues you may have (HINT: You will have a fan-in issue when implementing the 4-
input OR operation).

¢ Redraw the final logic diagram that will be implemented on your breadboard.
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Create the Truth Table

In the space provided below, draw the truth table for the 3-input prime number detector.

Create the Minterm List

In the space provided below, enter the minterm list for the 3-input prime number detector.

Create the Canonical SOP Logic Expression

In the space provided below, enter the canonical SOP logic expression for the 3-input prime number detector.

Draw the Logic Diagram for the Canonical SOP Logic Expression

In the space provided below, draw the logic diagram for the canonical SOP logic expression for the 3-input prime
number detector. Your circuit should contain three inverters to generate A’, B’, and C’. Your circuit should contain 4x,
3-input AND operations to generate the 4x minterms in this circuit. Your circuit should contain 1x, 4-input OR operation
to generate the output of the circuit.
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Map the Logic Diagram for your SOP Circuit into Available ICs in your Kit

At this point you are now ready to begin thinking about how to implement your logic diagram in real circuitry. Each
of the gates in the above logic circuit will be implemented using real circuits from your parts kit. In this step you need
to think about which ICs will implement the logic operations. You are essentially mapping the operations into real
circuitry. This can be done by drawing rectangles around various operations that can be grouped into specific ICs.

First, you need 3x inversion operations. Note that your parts kit contains an HC04 IC, which has 6x inverters on
it. This means you can implement all three inversion operations on 1x HC04. Draw a rectangle around your 3x inverters
in your logic diagram and label the rectangle “HC04". This rectangle represents how you will implement the inverters
on our breadboard.

The next step is to map the 4x, 3-input AND operations into ICs in your parts kit. Note that your parts kit contains
a 3-input AND gate in the form of the HC11 IC. The HC11 contains 3x, 3-input AND operations. This means you will
need 2x of the HC11 IC in order to implement all four of the AND operations in your circuit. Draw one rectangle around
the upper three AND operations and another rectangle around the lower AND operation. Label both rectangles “HC11".
These rectangles represent how you will implement the AND operations on our breadboard.

Finally, you need to map the 4-input OR operation into ICs in your parts kit. Note that you do NOT have a 4-input
OR gate IC. The largest OR gate in your kit has 3-inputs. You have encountered a fan-in issue.

Address Any Fan-In Issues You've Encountered

Fan-in issues are addressed by manipulating the logic operation into one that is equivalent, but that uses gates
that exist in your parts kit. In this situation, you can apply the associative property to the 4-input OR operation in order
to manipulate it into an equivalent expression that uses only 2-input operations. Consider the following:

F = (m2+ m3+ ms+ mz7) = (mz2 + mg) + (Ms + m7)

Notice that the manipulated expression gives the same logic operation, but uses 3x, 2-input OR operations instead
of 1x, 4-OR operation. The 2-input OR operations can be implemented using the HC32. Since the HC32 contains 4x,
2-input OR gates, you can implement the all 3 operations on a single HC32 IC.

Back in your logic diagram, add an additional drawing next to the 4-input OR gate that shows the new logic
operation using 3x, 2-input OR gates. Draw are rectangle around the three OR operations and label it “HC32". This
rectangle represents how you will implement the OR operations on our breadboard.

Record your SOP design process from above electronically. You should have all of your work on one page. If you
printed the page with your design steps and manually wrote in your steps, you can either scan the page or take a photo
of the page and save as a JPG. If you created the design electronically, take a screen shot of your design steps and
save in JPG format. This image satisfies the requirements for deliverable #2.

4.1.5.3 Implement a 3-Input Prime Number Detector using a Canonical SOP Form

Breadboard your Canonical SOP Circuit for the Prime Number Detector

You are now going to breadboard your canonical SOP circuit. You will drive in the 3-bit input codes using your
LED driver circuit. You will display your detector’s final output on the “F” LED of the driver circuit. When building your
circuit it is useful to label your wires to avoid confusion. Also, it is good practice to test each interim computation as
you go. For example, once you wire up the first minterm (mz), test that it only asserts for the appropriate input code
before moving onto bread boarding the next minterm. This will avoid the situation where you wire the entire circuit and
then discover that it doesn’t work and you have to start debugging back at the beginning. You can test the interim
operations by wiring the result to the F LED of the driver circuit. Position your SOP circuit so that here is room for the
POS circuit in the next section. Consider the breadboard layout shown in Figure 4.3. NOTE: Don't try to simply copy
the wiring in this figure. It is provided for reference on how to layout your breadboard. You should wire your own
breadboard according to your own logic diagram.
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3-Bit Input
Codes AND OR SOP Circuit
(A, B, C) Inverters Gates Gates Output

g This circuit is just for

| reference. Wire your

own circuit based on
your logic diagram.

Figure 4.3
Prime Number Detector SOP Breadboard Layout

Test your Canonical SOP Prime Number Detector Circuit

Take a short video (<5 s) showing the proper operation of your canonical SOP prime number detector. You should
cycle through each of the 8 possible input codes and show that the F LED only asserts for prime numbers. This video
satisfies the requirements for deliverable #3.
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4.1.5.4 Design a 3-Input Prime Number Detector using a Canonical POS Form

You are now going to design a functionally equivalent circuit to the SOP you just created, but now using a canonical
POS form.

Create the Truth Table

In the space provided below, redraw the truth table for the 3-input prime number detector. This is the same table
from the SOP design, you are just redrawing it here so you have it readily available.

Create the Maxterm List

In the space provided below, enter the Maxterm list for the 3-input prime number detector.

Create the Canonical POS Logic Expression

In the space provided below, enter the canonical POS logic expression for the 3-input prime number detector.

Draw the Logic Diagram for the Canonical POS Logic Expression

In the space provided below, draw the logic diagram for the canonical POS logic expression for the 3-input prime
number detector. Your circuit should contain three inverters to generate A’, B’, and C’. Your circuit should contain 4x,
3-input OR operations to generate the 4x maxterms in this circuit. Your circuit should contain 1x, 4-input AND operation
to generate the output of the circuit.
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Map the Logic Diagram for your POS Circuit into Available ICs in your Kit

Now map the logic operations in your diagram into the parts that are available in your kit. For your inverters, you
can reuse the inverter IC from your SOP circuit. You will need to use 2x, HC4075 ICs to implement the 4x, 3-input OR
operations. For your final 4-input AND operation, your lab kit contains a 4-input AND IC (HC21) so you don'’t have any
fan-in issues in your POS circuit. As before, draw rectangles around the logic operations to represent the ICs that will
be used to implement the gates. Label each rectangle with the IC part number.

Record your POS design process from above electronically. You should have all of your work on one page. If you
printed the page with your design steps and manually wrote in your steps, you can either scan the page or take a photo
of the page and save as a JPG. If you created the design electronically, take a screen shot of your design steps and
save in JPG format. This image satisfies the requirements for deliverable #4.

4.1.5.5 Implement a 3-Input Prime Number Detector using a Canonical POS Form

Breadboard your Canonical POS Circuit for the Prime Number Detector

Now breadboard your canonical POS circuit. You can reuse the HCO4 inverter IC from the prior section. Note that
you can't drive the F LED with two signals. You will need to disconnect your SOP output and instead connect the POS
output to F.

Test your Canonical POS Prime Number Detector Circuit

Take a short video (<5 s) showing the proper operation of your canonical POS prime number detector. You should
cycle through each of the 8 possible input codes and show that the F LED only asserts for prime numbers. This video
satisfies the requirements for deliverable #5.

Lab 4.1 After completing this lab exercise, can you:

e Describe the operation of the LED driver circuit that produces input codes to your
logic circuit while simultaneously displays the input codes and output code on LEDs?

e Design & implement a canonical SOP circuit from a word description?

e Design & implement a canonical POS circuit from a word description?

e Explain what a fan-in issue is and how to address it?
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Lab 4.2: 3-Input Prime Number Detector using Minimized Forms

4.2.1 Objective

The objective of this lab is to gain experience with logic synthesis using minimized sum-of-products (SOP) and
minimized product-of-sums (POS) topologies. You will design a 3-input prime number detector using both forms and
demonstrate their proper (and equivalent) operation. You will also gain experience with a circuit used to drive higher

current loads than a basic gate can provide (i.e., a buzzer).

4.2.2 Learning Outcomes

After completing this lab, you will be able to:

Design, breadboard, and test combinational logic circuits in both minimized SOP and POS forms.
Implement a circuit to drive a buzzer with a logic signal as its control input.

4.2.3 Parts Needed

Breadboard + wires.

Analog Discovery 2.

LED driver circuit from prior lab (8-position slider switch, 10 kQ resistor network, 330 kQ resistor
network, 5x red LEDs, 1x 74HCO04 inverter IC).
1x, 74HCO04 inverter IC.

2x, 74HCO08 2-input AND ICs.

2x 74HC32 2-input OR gate ICs.

1x, Magnetic Buzzer.

1x, NPN Transistor, 2N3904.

1x, Diode, 1N4002.

1x, 10 kQ2 axial resistor.

4.2.4 Deliverables

The deliverable(s) for this lab are as follows:

1.
2.

3.
4.

5.

Provide your design steps to synthesize a minimized SOP logic circuit (10% of exercise).
Demonstrate the proper operation of a 3-input prime number detector implemented with a minimized
SOP form (30% of exercise).

Provide your design steps to synthesize a minimized POS logic circuit (10% of exercise).
Demonstrate the proper operation of a 3-input prime number detector implemented with a minimized
POS form (30% of exercise).

Demonstrate the proper operation of a buzzer driving circuit (20% of exercise).

4.2.5 Lab Work & Demonstration

4.2.5.1 Design a 3-Input Prime Number Detector using a Minimized SOP Form

You are going to design a circuit that will assert when the decimal value of the 3-bit input is a prime number. A 3-
bit input can represent numbers from 010 to 710. Within this range, the values 2, 3, 5, and 7 are considered prime
numbers. You will do this using a minimized SOP approach. You will derive the minimized SOP logic expression using

a K-map. The steps in this design process are as follows:

Create a 3-input truth table with the desired output for each input code.
Use a K-map to drive a minimized SOP logic expression.

Draw the logic diagram of the SOP logic expression.

Map the logic operations into the available ICs in your parts kit.
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Create the Truth Table

In the space provided below, draw the truth table for the 3-input prime number detector.

Derive the Minimized SOP Logic Expression using a K-map

In the space provided below, derive the minimized SOP logic expression using a K-map for the 3-input prime
number detector.

Draw the Logic Diagram for the Minimized SOP Logic Expression

In the space provided below, draw the logic diagram for the minimized SOP logic expression for the 3-input prime
number detector.

Map the Logic Diagram for your SOP Circuit into Available ICs in your Parts Kit

In the above logic diagram, draw rectangles around the logic operations that can be implemented within a single
logic IC from your parts kit. Write the part number next to the rectangle.
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Record your SOP design process from above electronically. You should have all of your work on one page. If you
printed the page with your design steps and manually wrote in your steps, you can either scan the page or take a photo
of the page and save as a JPG. If you created the design electronically, take a screen shot of your design steps and
save in JPG format. This image satisfies the requirements for deliverable #1.

4.2.5.2 Implement a 3-Input Prime Number Detector using a Minimized SOP Form

Breadboard your Minimized SOP Circuit for the Prime Number Detector

You are now going to breadboard your minimized SOP circuit. You will drive in the 3-bit input codes using your
LED driver circuit. You will display your detector’s final output on the “F” LED of the driver circuit.

Test your Minimized SOP Prime Number Detector Circuit

Provide power to your breadboard using the power supply from the Analog Discovery configured to output +3.4v.
Take a short video (<5 s) showing the proper operation of your minimized SOP prime number detector. You should
cycle through each of the 8 possible input codes and show that the F LED only asserts for prime numbers. This video
satisfies the requirements for deliverable #2.

4.2.5.3 Design a 3-Input Prime Number Detector using a Minimized POS Form

You are now going to design a circuit that will implement the 3-input prime number detector, but this time using a
minimized POS approach. You will derive the minimized POS logic expression using a K-map. The steps in this design
process are as follows:

e Create a 3-input truth table with the desired output for each input code.
e Use a K-map to drive a minimized POS logic expression.

e Draw the logic diagram of the POS logic expression.

e Map the logic operations into the available ICs in your parts kit.

Create the Truth Table

In the space provided below, draw the truth table for the 3-input prime number detector. This is the same table as
above, it is just being redrawn here so it is readily available.

Derive the Minimized POS Logic Expression using a K-map

In the space provided below, derive the minimized POS logic expression using a K-map for the 3-input prime
number detector.
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Draw the Logic Diagram for the Minimized POS Logic Expression

In the space provided below, draw the logic diagram for the minimized POS logic expression for the 3-input prime
number detector.

Map the Logic Diagram for your POS Circuit into Available ICs in your Parts Kit

In the above logic diagram, draw rectangles around the logic operations that can be implemented within a single
logic IC from your parts kit. Write the part number next to the rectangle.

Record your POS design process from above electronically. You should have all of your work on one page. If you
printed the page with your design steps and manually wrote in your steps, you can either scan the page or take a photo
of the page and save as a JPG. If you created the design electronically, take a screen shot of your design steps and
save in JPG format. This image satisfies the requirements for deliverable #3.

4.2.5.4 Implement a 3-Input Prime Number Detector using a Minimized POS Form

Breadboard your Minimized POS Circuit for the Prime Number Detector

You are now going to breadboard your minimized POS circuit. You will drive in the 3-bit input codes using your
LED driver circuit. You will display your detector’s final output on the “F” LED of the driver circuit.

Test your Minimized POS Prime Number Detector Circuit

Take a short video (<5 s) showing the proper operation of your minimized POS prime number detector. You should
cycle through each of the 8 possible input codes and show that the F LED only asserts for prime numbers. This video
satisfies the requirements for deliverable #4.

4.2.5.5 A Buzzer Driving Circuit

Breadboard an Interfacing Circuit for a Magnetic Buzzer

There are often times when a digital circuit needs to interface with a device that requires more current than a logic
gate output can provide. One example of this is a magnetic buzzer. The buzzer in your parts kit will make sound when
Vcc is provided across its terminals; however, it will also draw 35 mA when it is on. This is above what our 74HC logic
family can provide. In order to interface our logic signals to the buzzer, we will use the circuit in Figure 4.4.
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Figure 4.4
Schematic of Interfacing Circuit for a Magnetic Buzzer

The 2N3904 is an NPN transistor. This transistor can be thought of as a switch with a control signal. When we
provide a high voltage to its control input (the BASE), it will close the switch, allowing current to flow between the other
two terminals (the COLLECTOR & EMITTER terminals). The control signal takes very little current so we can drive it
directly from a 74HC gate. The advantage of using this transistor is that the current between the collector and emitter
terminals can be very high (200mA max). This allows us to use a 74HC gate to drive a device that pulls more current
than the 74HC can provide. The diode in this circuit is used to sink the remaining current in the buzzer when it is turned
off. Since the buzzer is magnetic, it acts like an inductor. When we turn it off, the current can’t stop flowing
instantaneously. The diode provides a path for the current to flow when it switches off instead of forcing it into the NPN
transistor, which will cause damage. The 10kohm resistor is used to limit the current that flows into the NPN transistor.
Keep the protective tape on the buzzer or it will be LOUD!

: Magnetic
Diode Buzzer
Control Signal from
Logic Circuit NPN
Transistor

10 k2 Resistor

Figure 4.5
Layout of Interfacing Circuit for a Magnetic Buzzer

Test your Buzzer Circuit

Connect the output of one of your prime number detector circuits to both the F LED and the input to the buzzer.
Whenever the output of the circuit is asserted, you should hear the buzzer sound. Take a short video (<5 s) showing
the proper operation of your interfacing circuit for the buzzer. You should cycle through a few of the input codes that
produce a logic 1 on the output to turn the buzzer on. This video satisfies the requirements for deliverable #5.

Lab 4.2 After completing this lab exercise, can you:

e Design & implement a minimized SOP circuit from a word description?
e Design & implement a minimized POS circuit from a word description?
o Describe the operation of an interfacing circuit for a magnetic buzzer circuit?
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Lab 4.3: 7-Segment Display Decoder (Discrete)

4.3.1 Objective

The objective of this lab is to gain additional experience with logic synthesis using minimized SOP/POS forms and
logic manipulation using DeMorgan’s Theorem. You will be designing a 3-input, 7-segment display decoder and
demonstrating its proper operation.

4.3.2 Learning Outcomes
After completing this lab, you will be able to:

e Design, breadboard, and test a 3-input 7-segment display decoder.
e Use DeMorgan’s theorem to manipulate logic expressions to use NAND/NOR gates.

4.3.3 Parts Needed

e Breadboard + wires.

e Analog Discovery 2.

e LED driver circuit from prior lab (8-position slider switch, 10 kQ resistor network, 330 kQ resistor
network, 5x red LEDs, 1x 74HCO04 inverter IC).

e  7-Segment character display.

e 7x, 150 Q axial resistors.

e Nearly all of your discrete basic gates in your parts kits (AND, OR, INV, NAND, and NOR).

4.3.4 Deliverables

The deliverable(s) for this lab are as follows:

1. Provide your design steps to synthesize the minimized SOP/POS logic expressions for the 7-segment
decoder circuitry (10% of exercise).

2. Provide your steps to manipulate at least one logic expression using DeMorgan’s Theorem to
implement the expression using only NAND or NOR gates (10% of exercise).

3. Demonstrate the proper operation of your 7-segment decoder circuit implemented on your breadboard
(80% of exercise).

4.3.5 Lab Work & Demonstration
4.3.5.1 Design the Logic for the 7-Segment Decoder
Complete the Truth Table for the 7-Segment Decoder

You are going to design a 7-segment display decoder. A 7-segment display contains 7 separate LEDs that can
be turned on/off to create symbols that represent decimal numbers. They are used in many applications when decimal
numbers need to be displayed in a simple manner. One of the most common applications that you may be familiar with
is a digital clock. Your lab kit contains a 7-segment display that you can examine as you read through this exercise.
You are going to build a decoder that takes in a 3-bit binary number and displays the equivalent decimal symbol on the
7-segment display (e.g., 0, 1, 2, 3, 4, 5, 6 or 7). Note that your decoder will consist of 7 different logic circuits, one for
each of the LEDs within the 7-segment display.

The 7-segment display in your lab kit is manufactured in a common-cathode configuration. This part contains
seven separate input pins for each LED segment and then a single cathode for all LEDs. This minimizes the number
of pins on the part. The common-cathode configuration allows us to design our decoder using positive logic (e.g., a
logic 1 corresponds to the LED being ON). We can connect the single cathode of the display to ground. Figure 4.6
shows how the display is wired and an example of how it is used. The example shows a 3-bit code that is displayed
using our LED driver from prior labs and the corresponding decimal symbol on the 7-segment display.
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7-Segment Display Pinout, Schematic, and Use-Model

be ON to display the corresponding decimal character.
display character of “0”. To create this character, you turn on all LEDs within the display except for “g".
you would go to the row corresponding to input codes A=0, B=0, C=0 and enter Fa=1, Fp=1, Fc=1, Fg=1, Fe=1, Fge=1,
and Fg=0. Once you have completed the table for all input codes, logic expressions can be derived for each column.
The column values for Fa have been provided to get you started. The first part of deliverable #1 is to complete the truth

The first step in designing the decoder logic is to build a truth table for each of the seven circuits that will drive the
display. Figure 4.7 illustrates how to derive the truth tables for the decoder. Each of the seven LEDs are labeled a, b
¢, d, e, fand g. For each input code, you will enter a 1 in the row of the following table if the individual LED needs to
For example, the input code A=0, B=0, C=0 corresponds to a

table in Figure 4.7.
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Figure 4.7
Truth Table for 7-Segment Display Decoder

Derive the Minimized Logic Expressions for the 7-Segment Decoder

Now you are going to create a logic expression for each of the segments in the display (i.e., Fa, Fb, Fe, ..., Fg). You
will do this by creating 3-input K-maps for each function and then deriving a minimal logic expression. You will need
seven k-maps. The input codes for each K-map are A, B, and C. The output values within each K-map come from
the columns associated with each segment. In the space below, derive the minimized logic expressions. Note that
depending on the K-map, a POS form might be easier to implement than a SOP.
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e Logic Expression for Fa:

e Logic Expression for Fp:

e Logic Expression for Fc:

e Logic Expression for Fq:

e Logic Expression for Fe:

e Logic Expression for F:

e Logic Expression for Fq:
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Record your table and logic expressions from above electronically. This should consist of two pages, one for the
truth table and one with your seven logic expressions. If you printed the pages and completed them manually, you can
either scan the pages or take photos of the pages and save as a JPG. If you completed the design electronically, take
a screen shot of your design steps and save in JPG format. These image satisfies the requirements for deliverable
#1.

4.3.5.2 Use DeMorgan’s Theorem to Manipulate at Least One of the Logic Expressions

Now you are going to begin mapping the logic expressions into the logic gates in your parts kit. As you go through
this process, you will quickly realize that you do not have enough AND gates and OR gates to implement all seven
logic expressions in their derived SOP/POS forms. You will need to manipulate some (or all) of your logic expressions
using DeMorgan’s Theorem into forms that use NAND gates and NOR gates. Your lab kits does contain a variety of
n-input NAND/NOR gates that will allow you to complete the implementation. For this deliverable, show your use of
DeMorgan’s to manipulate at least one of your logic expressions from above. Record your logic manipulation
electronically. This image satisfies the requirements for deliverable #2.

4.3.5.3 Implement your 7-Segment Decoder System

Breadboard your 7-Segment Decoder Circuit

Now breadboard your 7 logic circuits and your 7-segment display. The 3-bit input will come from the slider switches
in your LED driver circuit. When you are finished, you will be able to cycle through each of the 8 possible input codes
on the slider switches and see the corresponding decimal symbol on the character display. When breadboarding your
character display, a resistor is needed in series with each LED. You will need to place 150Q resistors in series with
each input pin of the display in order to set the forward current to its recommended value. You will leave your 7-
segment display on your breadboard for the next few lab exercises, so consider an organized approach to the wiring
as shown in Figure 4.6.

This is a large circuit to implement. Consider bread boarding and testing one circuit at a time. For example,
implement the circuit for segment Fa. Then cycle through the inputs codes 000 to 111 and make sure that the LED
asserts correctly. This will allow you to ensure each segment is working incrementally before moving to the next circuit.
Another advantage of building the decoder one circuit at a time is that you can reuse terms that have been verified.
For example, once you know that A’, B, and C’ are working, you can use them in other circuits without putting down
more inverters. The same goes with common product or sum terms that occur in multiple circuits. Another tip is to
label the wires of interim terms so that you can easily find them as you build subsequent circuits.

Test Your 7-Segment Decoder Circuit

Provide power to your breadboard using the power supply from the Analog Discovery configured to output +3.4v.
Take a short video (<5 s) showing the proper operation of your 7-segment decoder. You should cycle through each of
the 8 possible input codes and the corresponding decimal symbol should light up on the 7-segment display. This video
satisfies the requirements for deliverable #3.

Lab 4.3 After completing this lab exercise, can you:

o Describe the theory of operation of a 7-segment decoder?

e Derive minimized logic expressions for a 7-segment decoder using either SOP or
POS forms?

e Use DeMorgan’s Theorem to manipulate logic expressions into forms that use only
NAND or NOR gates?

e Implement a 7-segment decoder system using discrete logic gates?




54 « Chapter 4: Combinational Logic Design




Chapter 5: VHDL (part 1)

Lab 5.1: 4-Input Prime Number Detector in VHDL

5.1.1 Objective

The objective of this lab is to gain experience designing combinational logic using a hardware description language
and implementing the circuitry using the modern digital design flow. In this lab you will design a 4-input prime number
detector in VHDL and then use the Quartus toolchain to synthesize and implement your circuit on a common
programmable logic device, the field programmable gate array (FPGA). You will also gain experience on how to
interface an FPGA board to your breadboard.

5.1.2 Learning Outcomes
After completing this lab, you will be able to:

e Use the Quartus toolchain to synthesize, technology map, place/route and implement a VHDL model on
an FPGA.
e Interface an external FPGA board to your breadboard.

5.1.3 Parts Needed

e Breadboard + wires.

e LED driver circuit from prior lab (8-position slider switch, 10 kQ resistor network, 330 kQ resistor
network, 5x red LEDs, 1x 74HCO04 inverter IC).

e  Buzzer circuit from prior lab (magnetic buzzer, 2N3904 NPN transistor, 1N4002 diode, 10 kQ axial
resistor).

e DEO-CV FPGA board.

¢ 3x female-to-female jumper wires.

5.1.4 Deliverables
The deliverable(s) for this lab are as follows:

1. Demonstrate a VHDL design on an FPGA that drives the DEO-CV slider switches to the DEO-CV LEDs
(50% of exercise).

2. Demonstrate a 4-input prime number detector in VHDL on an FPGA (40% of exercise).

3. Provide your top.vhd design file (10% of exercise).

5.1.5 Lab Work & Demonstration

You are going to design another prime number detector, but this time the detector will take in numbers between
010 and 1510. This will require your detector to have four binary inputs (00002 to 11112). The detector will be designed
in VHDL and implemented on an Altera Cyclone V FPGA (part no. 5CEBA4F23C7N), which resides on the DEO-CV
board. This board is provided as part of your lab kit. Your VHDL will be synthesized using the Quartus toolchain and
downloaded to the FPGA board for testing. The inputs of the detector will come from the 4x slider switches on the
DEO-CV board. The output of the detector will be driven to a pin on the DEO-CV board and then a jumper wire will be
used to connect the output to your breadboard, which will in turn drive your buzzer and an LED. Your breadboard will
receive power (+3.4v) from the DEO-CV board for this lab. Note that we will not be using the Analog Discovery for this
lab. Again, we will use the definition of a prime number as: “A Prime Number can be divided evenly only by 1 or itself
and it must be a whole number greater than 1.” By this definition, the prime numbers between 010 and 1510 are: 2, 3,
5, 7,11 and 13. As is good practice in all large designs, we will get incremental pieces of the design working before
moving to the next part. First, we will create a Quartus project with VHDL to drive 4x slider switch inputs to 4x red LEDs
on the DEO-CV board. Second, we will connect the DEO-CV board to our breadboard. Finally, we will create the VHDL
to create a 4-input prime number detector with the inputs displayed on the red LEDs on the DEO-CV board and the

55
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output displayed on an LED on your breadboard. We will also drive the buzzer on the breadboard to provide audible
feedback. Figure 5.1 shows the block diagram for this lab exercise.

NOTE: The DEO-CV board
is going to power to your
breadboard.
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Figure 5.1
Block Diagram of the 4-Input Prime Number Detector System
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Figure 5.2 shows the final implementation of the prime number detector. Note that the DEO-CV board is connected
to the breadboard using jumper wires. The jumper wires are used to connect power (+3.4v) and ground between the
boards and routes the output of the detector (Prime) to the breadboard LED and buzzer. Don’t connect the DEO-CV
to your bread board yet. You will first get the DEO-CV working and then make the connection in a later step.
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Figure 5.2
Picture of the 4-Input Prime Number Detector System on the DEO-CV Board + Breadboard Interface

5.1.5.1 Implement a VHDL Design that will Drive the Switches to the LEDs on the DEO-CV Board

We first want to create a simple design that will drive the lower four slider switches on the DEO-CV board (labeled
SW3, SW2, SW1 and SWO) to the red LEDs on the DEO-CV board (labeled LEDR3, LEDR2, LEDR1 and LEDRO). In
this portion of the lab exercise we will create a new Quartus project, create the VHDL to accomplish driving the switch
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values to the LEDs, assign the pins of the FPGA to the 1/0 we are using, and synthesize the design. Once we download
our design to the FPGA we will be able to test the first part of this exercise. This will ensure that the Quartus software
is installed correctly, including the drivers for the DEO-CV board, and that the pins are assigned correctly before moving
onto the next parts. You should not connect the DEO-CV board to your breadboard in this step.

Install the Quartus Lite Software (if not already installed on your computer)

The Quartus Lite software can be downloaded for free from www.altera.com. This will take you to an intel website,
which purchased Altera Inc. in 2016. Once on this page, click on “Support” and then “Downloads”. You will need to
create a free account. There you'll be given the option of downloading various versions of Quartus. You want to
download the “Lite” version. Click on the “Download” icon next to the Lite version. In the next screen you'll be given
options on what all should be downloaded. You want to select three items:

e Select edition: Lite

e Select release: “latest release, i.e., the highest number”

e  Operating System: windows (assuming you are on windows)
Download Method: Direct download

Then click on the “Individual Files” tab. Select the following files to download:

e  Quartus Prime (includes Nios Il EDS)
e ModelSim-Intel FPGA Edition (includes Starter Edition)
e Cyclone V device support

Then click “Download Selected Files”. It will ask you where to download the files. Choose your Desktop and select
“OK”. It will then proceed to download three files. The files are large so it will take a while. Once they are downloaded
to your desktop, double click on the Quartus install file (named something similar to “QuartusLiteSetup-17.0.0.595-
windows.exe”). This will automatically install the ModelSim software and the Cyclone V drivers that you downloaded
as long as they are in the same location (i.e., the Desktop). Accept the defaults for all options in the install.

When complete, it will ask if you want to install desktop icons, launch Quartus, and/or launch the driver install tool.
Select the option to launch the driver install tool. Follow the instructions to install the drivers for the DEO-CV board.
When you plug in the DEO-CV board in the next few steps, the driver installation will complete.

Create a Folder for to Hold All of your VHDL Projects (if not already created)

For each Quartus project, you will manually create a folder and then direct Quartus to put all design files into that
directory. We want to first create a main folder that will hold all of the project folders that will be created throughout this
manual to help us stay organized. We will create a folder on the Desktop called “Logic_Lab”. Right click on the Desktop
of your computer and select “New > Folder”. Give it the name “Logic_Lab".

Create a Folder for this Exercise

Now we need to create the folder that will contain all of the Quartus files for this project. We want to name this
project something descriptive. Browse to your Logic_Lab folder that you created in the prior section and manually
create a folder called “Lab_05p1_PrimeNumDet".

Launch Quartus

On a windows 10 or equivalent machine, the Quartus application can be launched at: Start - Intel FPGA version
Lite Edition > Quartus (Quartus Prime version). Figure 5.3 shows the Quartus startup window that will appear.
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Quartus Startup Window

Create a New Project using the “New Project Wizard”

Click on the “New Project Wizard” button in the Home pane of the Quartus window. The Introduction window

shown in Figure 5.4 will appear.

Ok New Project Wizard

Introduction

The New Project Wizard helps you create a new project and
preliminary project settings, including the following:

o Project name and directory

0 Name of the top-level design entity
0 Project files and libraries

0 Target device family and device

. EDA tool settings

You can change the settings for an existing project and specify
additional project-wide settings with the Settings command
(Assignments menu). You can use the various pages of the Settings
dialog box to add functionality to the project.

] Don't show me this introduction again

< Back Finish Cancel

Help

Figure 5.4
Quartus New Project Wizard (Introduction)

Click on “Next” to go the next window. If you

don’t want the introduction window to show up next time you run New
Project Window, you can check the box. The Directory, Name, Top-Level Entity window shown in Figure 5.5 will appear.
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Figure 5.5

Quartus New Project Wizard (Directory, Name, Top-Level Entity)

For the working directory, click on the “...” button and browse to the “Logic_Lab/Lab_05p1_PrimeNumDet” folder

you created on your desktop. This project folder will contain all of the Quartus design files.

For the name of the project, enter “Lab_05p1_ PrimeNumbDet”. Note that as you type this name, Quartus

automatically enters the same name for the top-level entity. You do not want to use this name as your top-level

entity.

For the top-level design entity, enter “top”. The term top is the standard naming convention for the VHDL file that
is at the highest level of hierarchy in the system. At the top level, the ports of the entity will be the physical pins of the

device. For this exercise, we will only have one top-level file. We will create this file (top.vhd) in a later step.

Click on the “Next” button. The Project Type window shown in Figure 5.6 will appear.

Ok New Project Wizard

Project Type
Select the type of project to create.

@ Empty project

Create new project by specifying project files and libraries, target
device family and device, and EDA tool settings.

() Project template

Create a project from an existing design template. You can choose
from design templates installed with the Quartus Prime software, or
download design templates from the Design Store.

< Back Cancel Help

X

Figure 5.6
Quartus New Project Wizard (Project Type)

Leave the project type as “Empty” and click “Next”. The Add Files window shown in Figure 5.7 will appear.
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Add Files

Select the design files you want to include in the project. Click Add All to add all
design files in the project directory to the project.

Note: you can always add design files to the project later.
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Figure 5.7
Quartus New Project Wizard (Add Files)

This window is where we can add existing design files. For this exercise we do not have any existing design files.
Instead, we will be creating a new file called top.vhd. We will do this later outside of the New Project Wizard. Do not
do anything in this window except click “Next”. The Family, Device & Board Settings window shown in Figure 5.8 will
appear.

(G New Project Wizard X

Family, Device & Board Settings

Device Board

Select the family and device you want to target for compilation.
You can install additional device support with the Install Devices command on the Tools menu.

Tao determine the version of the Quartus Prime saftware in which your target device is supported, refer to the Device Support List webpage.

Device family Show in "Available devices' list
Eamily: Cyclone V (E/GX/GT/SX/SE/ST) Package: Any
Device: I Pin count: Any
Target device Core speed grade: Any
Auta device selected by the Fitter Name filter: 5CEBA4F23C7

® Specilic device selected in ‘Available devices' list [ Show advanced devices

QOther: nfa
Ayailable devices:

Name Core Voltage ALMs Total 1/0s GPIOs GXB Channel PMA GXEB Channel PCS PCle Hard IP
sceBAdF23CT 1.1V 18480 224 224 0

<Back Einish Cancel Help

Figure 5.8
Quartus New Project Wizard (Family, Device & Board Settings)

In this window we tell the Quartus synthesizer which device we will be targeting. Since we only installed the
Cyclone V FPGA family, only those devices will be shown. Notice that there are many different Cyclone V devices that
can be selected. We want to select the FPGA device that is on our DEO-CV board. We can begin filtering down the
selection by typing in the “Name filter” field on the right side of the pain. Begin typing 5CEBA4F23C7. After each
character is typed, it will reduce the number of devices that are available. Once you type the last character, there will
only be one device available. Highlight this device and click “Next”. The EDA Tool Settings window shown in Figure
5.9 will appear.
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Figure 5.9
Quartus New Project Wizard (EDA Tool Settings)

In this window you can direct Quartus to read files from various CAD tools from other vendors. For this exercise,
we will be using the Quartus tool by itself. Leave all the settings at <None> and click “Next”. The Summary window
shown in Figure 5.10 will appear.

(b New Project Wizard %

Summary

When you click Finish, the project will be created with the following settings:

Project directory: C:fUsers/ka1h784/Desktop/Logic_LabfLab_05p1_PrimeNumDet
Project name: Lab_05p1_PrimeNumbDet

Top-level design entity: top

Number of files added: o

Number of user libraries added: o

Device assignments:

Design temnplate: nfa
Family name: Cyclone V (E/GX/GT/SX/SE/ST)
Device: SCEBA4AF23C7
Board: nfa

EDA tools:

Design entry/synthesis: <None=> (<None>)
Simulation <None> {(<None>)
Timing analysis: 0

Operating conditions:

Core voltage: 1V
Junction temperature range: 0-85°C

< Back Next > Cancel Help

Figure 5.10
Quartus New Project Wizard (Summary)

Review the settings in this window and if correct, click “Finish”. If any of the settings are incorrect, you can click
the “Back” button to go back and change them. You will now see a hew blank project window with all of your settings
as shown in Figure 5.11.
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Figure 5.11
New Blank Project for the Cyclone V on the DEO-CV FPGA Board

Create the top.vhd File for this Project

Now we are ready to create the top.vhd file. In the Quartus window, use the pull-down menus to select: File >
New. In the New window that appears, select “VHDL File” under the Design Files group. Click “OK”.

Now we need to save the file and name it accordingly. In the Quartus window, use the pull-down menus to select:
File > Save As. By default, the name of the file should be called top.vhd and be located in your project directory.
Verify that these settings are correct (if not, fix them) and click “Save”. The top.vhd is now open for editing. If you
close this file it can be reopened by double clicking on it in the Project Navigator pane of the Quartus window.

Enter the VHDL Entity

We are now ready to enter the VHDL entity for the design. The entity contains all of the ports for the system.
Based on the block diagram provided in Figure 5.1, the ports are:

e SW (3 downto 0) This is the 4-bit input vector for the 4x slider switches on the DEO-CV board.

e LEDR (3downto 0) This is the 4-bit output vector for the 4x red LEDs on the DEO-CV board.

e Prime This is the output will go to pin 2 on the GPIO_1 connector and jumper-wired to
your breadboard.

Enter the following VHDL entity into your top.vhd. Notice that the entity name matches the file name in addition to
the name of the top-level of the design in Quartus. This tells Quartus that any ports that are declared will be connected
to pins on the FPGA board.

entity top is

port (SW > in bit_vector (3 downto 0);
LEDR : out bit_vector (3 downto 0);
Prime : out bit);

end entity;

At this point your project should look like Figure 5.12. Notice that Quartus recognizes the VHDL syntax and will
color code based on the construct type.
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Figure 5.12
VHDL Entity for Prime Number Detector

Enter the VHDL Architecture for the Switch-to-LED Circuit

Now we are ready to enter the VHDL architecture. The functionality we are going to model for this part is to
simply drive the slider switch values to the red LEDs. This can be done using a single concurrent signal assignment of
SW to LEDR. Enter the following VHDL architecture into your top.vhd. Notice that since both LEDR and SW are both
4-bit vectors, a single signal assignment will handle assigning bit 0 to bit 0, bit 1 to bit 1, etc.

architecture top_arch of top is
begin
LEDR <= SW;
end architecture;

Save your file using the pull-down menus File &> Save. At this point, your project should look like Figure 5.13.
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Figure 5.13
VHDL Architecture for Switch-to-LED Circuit

Compile your Design

Now we are going to compile the top.vhd file and fix any errors. To launch a task in Quartus, you double click on
the desired task name within the Task pane on the left hand side of the window. Notice that underneath the task
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“Compile Design” there are a handful of other tasks (i.e., Analysis & Synthesis, Fitter, etc.). When you click on “Compile
Design”, Quartus will run all of the lower-level tasks. If it encounters an error, it will stop at the task where the error
was found. If the task completes successfully, it will turn green. We typically allow Quartus to run as many tasks as it
can when we compile to attempt full synthesis of the design. To launch the compiler and synthesizer, double click on
“Compile Design”. This will take longer than a simple syntax check as Quartus is performing synthesis. The status of
the task will appear in the Messages window at the bottom of the pane. You will also see a status bar for each of the
tasks being performed. Once you have fixed any errors that have occurred and successfully completed the Compile
Design tasks, you will see the status in Figure 5.14.
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Quartus Window After Successful Compile and Synthesis

Assign the Ports to the Pins of the FPGA

We will now use a tool called Pin Planner to assign the ports of our top-level entity to the pins of the FPGA. Launch
Pin Planner using the pull-down menus: Assignments - Pin Planner. You will see a graphical depiction of the FPGA
with fields at the bottom to assign locations to any port that was in the entity during the most recent compile. At the
bottom of Pin Planner, enter the pin locations for the 9x I/0 of the Prime Number detector. The pin numbers will go in
the “Location” column. Notice that there is a column called “Fitter Location” that has values for pin locations. When
pins aren’t assigned manually during the first compile, Quartus will make automatic pin assignments for you. We do
not want to use these locations. We want locations that correspond to the switches, LEDs, and GPIO_1 pin we are
using in this exercise. Enter the following pin locations in the “Location” column of Pin Planner. To enter a value you
can either click in the location field and type in the exact pin name or you can double click in the field to access the
drop-down menu of available pins. Assign the following pin locations for this exercise.

e LED[3] PIN_Y3

e LED[2] PIN_W2

e LED[1] PIN_AA1
e LED[O] PIN_AA2
e Prime PIN_A12
e SWI[3] PIN_T12
e SWI[2] PIN_T13
o SWI1] PIN_V13
e SWI[O] PIN_U13

Also change the “I/O Standard” setting for the output ports to “3.3-LVCMOS" and the “Current Strength” setting to
“Maximum” for Prime. Once you are complete, you should see the results in Figure 5.15.
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Quartus Pin Planner for the Prime Number Detector

Pin Planner does not have a save option. Instead, you simply close it using the drop-down menus: File — Close.
Back in Quartus you’ll notice that the tasks are no longer green. This indicates that the design needs to be compiled
and synthesized again to take the new pin assignments into account. Double click on “Compile Design” and let it run
until all tasks have been completed successfully.

Program the FPGA with the Switch-to-LED Design

We are now ready to download the prime number detector design to the FPGA. Plug in the DEO-CV board to your
computer using the USB cable provided in the kit. You will power the DEO-CV board through the USB cable. You do
not need to plug in the AC adapter that is provided in the Terasic box. All of the FPGA designs in this manual are
small enough that the power from the USB cable is sufficient. Turn on the DEO-CV board by pressing the large red
power button. When the board comes on, it will run a program that is stored in its non-volatile memory that flashes the
1/0 in a variety of patterns. We will be overwriting this program with our own.

In the Quartus task pane, double click on “Program Device”. This will bring up the Programmer tool. In Quartus
versions 17 and newer, the programmer tool will automatically go out and discover any devices on the board that the
current design will fit into. When the programmer finds the correct Cyclone V device, you will see the results in Figure
5.16. Notice that the file containing the information on how to configure the FPGA to implement our design is
output_files/top.sof. The top.sof file is the end result of the Quartus synthesis and is what is to be downloaded to the
FPGA.
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If the programmer does not automatically find the device, you can press the “Auto Detect” button on the left of the
programmer window. Once it finds the device, you need to assign the top.sof file. Highlight the device, right-click, and
select “Add File”. Browse to the output_files folder and select top.sof.

When using the programmer for the first time, it may say “No Hardware” next to the hardware setup button. This
means that the programmer is not using the correct drivers for the DEO-CV board. Click on the “Hardware Setup”
button. For the “Currently Selected Hardware”, use the drop-down menus to select “USB-Blaster [USB-x]". Click
“Close”. Now the programmer will use the proper drivers to communicate with the DEO-CV board.

At this point we are ready to download the top.sof file to the FPGA in order to program it. Click on the “Start” button
on the left side of the programmer window. The status of the programming will be displayed in the status bar in the
upper-right corner of the window. When successful, it will say “100% (Successful)”.

Test your Design to Drive the Switches to the LEDs of the DEO-CV

Your design is now on the FPGA. You should be able to toggle the four slider switches on the DEO-CV and see
the red LEDs turn on/off accordingly. If you are experiencing issues, you will need to go back and check each step in
the Quartus design flow. The first place to start is in pin planner. Sometimes the pin locations will get dropped if you
are still in edit mode when you close the pin planner window. Take a short video (<3 s) showing the proper operation
of your switch-to-LED design. You should toggle through each of the four slider switches and verify that each red LED
turns on. This video satisfies the requirements for deliverable #1.

5.1.5.2 Implement a VHDL Design for a 4-Input Prime Number Detector

Connect the DEO-CV board to your Breadboard

Now you are going to connect the DEO-CV board to your breadboard. Refer to figures Figure 5.1 and Figure 5.2
for the details of the connection. Turn off the DEO-CV board using the red power button. You will use 3x female-to-
female jumper wires to make this connection. These jumper wires will plug onto three of the 0.1” pins on the GPIO_1
connector on the DEO-CV board. On the bread board side, you should use the 0.1” header pins to interface the female
receptacle to your breadboard. One jumper wire will be used to connect the ground of the DEO-CV (pin 29 of GPIO_1)
to the ground rails of your breadboard. A second jumper wire will be used to provide +3.4v (pin 30 of GPIO_1) to the
power rails of your breadboard. A third jumper wire will connect the output of the detector Prime (pin 2 of GPIO_1) to
the LED in your LED-driver circuit that is used to display the output of a logic circuit. You should also add a jumper
wire on your breadboard to connect Prime to the input of your buzzer.

Once the connection is complete, turn on the DEO-CV board using the red power button. You should be able to
toggle the slider switches on your breadboard and see the LEDs in your LED-driver circuit turn on/off. This verifies that
your breadboard is receiving power and ground.

Enter the VHDL Model for the Detector

Now we are ready to enter the VHDL to implement the prime number detector. The VHDL for this detector will go
in the architecture of your top.vhd after your signal assignment to display the DEO-CV slider switches on the red LEDs.
You should implement your detector using either a conditional or selected signal assignment. These two approaches
allow you to enter the desired functionality in an abstract, and easily interpreted form. Consider the following two code
examples to help get you started.

Example of a conditional signal assignment:

Prime <= “0” when (SW = “0000") else
“0” when (SW = “0001”) else
“1” when (SW = “0010”) else -- the rest of the functionality goes below..

Example of a selected signal assignment:

with (SW) select
Prime <= “0” when *0000”,
“0” when “0001”,
“1” when “0010”, -- the rest of the functionality goes below..
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Enter the VHDL for the detector in your top.vhd file in Quartus. You can choose whichever modeling method you'd
like (i.e., conditional or selected). You'll need to complete the signal assignments given in the examples above for each
input condition. Note that the above syntax uses single apostrophes and not the back ticks. If you try to copy/paste
the above syntax directly into Quartus, it may paste incorrectly.

Compile and Synthesize your Design

Make sure to save your design and then double click on “Compile All” to perform a full synthesis of your design.
Fix any errors you encounter and re-compile until all tasks are successful.

Program the FPGA with your New Design

After the synthesis is complete, download your design to the FPGA. When you launch the programmer tool (if it
isn’t already running), it will automatically point to the updated top.sof file to be downloaded. You will be able to simply
click “Start” on the programmer to download your design.

Test your Prime Number Detector Design

Test your prime number detector by cycling through all possible 16 input codes on the DEO-CV slider switches and
observing the Prime output on the breadboard LED and buzzer. Take a short video (<5 s) showing the proper operation
of your prime number detector. You should show that the LED and buzzer on your breadboard assert for each prime
number on the input. This video satisfies the requirements for deliverable #2.

5.1.5.3 Save a Copy of your top.vhd for your Records

You now want to locate for your records the top.vhd file for the third deliverable for this exercise. This file is located
in your main working directory (Desktop\Logic_Lab\Lab_05p1_PrimeNumDet\top.vhd). Go into your working directory
for this project and locate this file. This file satisfies the requirements for deliverable #3.

After you are done, close your project using the pull-down menus: File & Close Project. Exit Quartus using the
pull-down menus: File > Exit.

Lab 5.1 After completing this lab exercise, can you:

e Use the modern digital design flow to take a VHDL model for a combinational logic
circuit and synthesize it for implementation on an FPGA?

e Interface an FPGA board to a breadboard to successfully transfer digital signals
between the two systems.
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Chapter 6: MSI Logic

Lab 6.1: 4-Input, 7-Segment Display Decoder (in VHDL)

6.1.1 Objective

The objective of this lab is to gain further experience with implementing combinational logic circuits using hardware
description languages, implementing the systems on programmable logic devices, and interfacing two digital systems
together. This lab will also demonstrate how to create a new Quartus project by copying a prior project so that design
components can be reused.

6.1.2 Learning Outcomes
After completing this lab, you will be able to:

e Create a new Quartus project by copying your prime number detector project from lab 5.1 so that you
can reuse components of its design.
e Create a 4-input, 7-segment display decoder (016 to F15) on an FPGA using VHDL.

6.1.3 Parts Needed

e Breadboard + wires.

e LED driver circuit from prior lab (8-position slider switch, 10 kQ resistor network, 330 kQ resistor
network, 5x red LEDs, 1x 74HCO04 inverter IC).

e  Buzzer circuit from prior lab (magnetic buzzer, 2N3904 NPN transistor, 1N4002 diode, 10 kQ axial
resistor).

e 7-Segment display circuit from prior lab (7-segment display, 7x 150 Q resistors).

e DEO-CV FPGA board.

¢ 10x female-to-female jumper wires.

6.1.4 Deliverables

The deliverable(s) for this lab are as follows:

1. Demonstrate a 4-input, 7-segment display decoder + 4-input prime number detector implemented with
VHDL on an FPGA (90% of exercise).
2. Provide your top.vhd design file (10% of exercise).

6.1.5 Lab Work & Demonstration
6.1.1.1 Implement a VHDL Design for a 7-Segment Decoder + 4-Input Prime Number Detector

You are going to design a 7-segment display decoder in VHDL. The decoder will take in the values from the 4x
slider switches on the DEO-CV and output the necessary logic to display the characters on a display on your
breadboard. The display will show characters 016 to Fis corresponding to the 4-bit input. You will also reuse your prime
number detector from lab 5.1 in order to assert the buzzer and an LED on your breadboard whenever the display is
showing a prime number. Once again, the prime numbers between 010 and 1510 are: 2, 3, 5, 7, 11 (bis) and 13 (dis).
You will also show the values of the slider switches on the LEDs on the DEO-CV. Figure 6.1 shows the block diagram
for the 7-segment decoder system in this exercise.

69
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Block Diagram of the 7-Segment Decoder System

Figure 6.2 a picture the 7-segment decoder system.
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Picture of the 7-Segment Decoder System on the DEO-CV Board + Breadboard Interface
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Determine the Logic Functionality for the Decoder

Before you can model the decoder in VHDL, you need to design the functionality you wish to model. In a prior lab,
you created a 3-input 7-segment decoder using discrete parts by first completing a table for the logic of each of the 7
LEDs in the display. In this lab, you will need to redo the table to support all characters corresponding to a 4-bit input.
The table in Figure 6.3 is provided to assist you. Complete this table to determine the logic for the 7 outputs that will
drive the character display. The first row is completed to get you started.

SW(3 downto 0) SevenSeq(6 downto 0)
3210 abcdefg

7-SegmentDisplay {0 0 0 0 |I-H{1[1]1[1]|1[1]0
ra
. 000 1[:!
T
fl X 001 0]
- 001 1[=
e c |
d 010 0|
a 010 1L
Common Cathode -
0=OFF, 1=ON 0110 ZH
011 1|t
- _ |
100 0
100 1Lt
101 okt
101 1L
e —
1100
110 1=
111 0k
111 1%
Figure 6.3

Truth Table for 4-input, 7-Segment Display Logic
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Create a New Quartus Project by Copying your Prior Prime Number Project

Inlab 5.1, we created a Quartus project for a 4-input prime number detector. We want to reuse many of the design
aspects of this prior project including the FPGA selection, the logic to drive the slider switches to the LEDs, and the pin
assignments for the slider switches and LEDs. Quartus provides the ability to create a new project by copying over a
prior one.

Launch Quartus and then open your project for lab 5.1 using the pull-down menus: File - Open Project. You'll
want to browse to the project file at: “Desktop\Logic_Lab\Lab_05p1_PrimeNumDet/Lab_05p1_PrimeNumDet.qpf” and
select “Open”.

Now you can copy the open project to a new project using the pull-down menus: Project — Copy Project. The Copy
Project window allows you to give the new project a different name and create a folder for its location at the same time.
Give the name of the project and folder “Lab_06p1_SevenSegDecoder”. Also check the box to open the project. Your
Copy Project settings window should look like Figure 6.4.

G Copy Project X

Destination directory: C:/Users/k91 h784/Desktop,’Lugi:fLabfLabﬁOGp1iSevenSegDecoder{(
New project name: Lab_06p1_SevenSegDecoder

Open new project. (This option closes the current project.)

Cancel Help

Figure 6.4
Quartus Copy Project Settings

Click “OK” to copy the project. Quartus will prompt you to verify that you want a new folder created for this project.
Click “Yes”.

Update the VHDL Entity for the 7-Segment Decoder

In the new project, double click on “top.vhd”. You will see the VHDL from lab 5.1. The first thing we need to do is
update the entity to reflect the new ports needed for the 7-segment decoder. We will be re-using the ports SW, LEDR,
and Prime. The new ports for this design are:

e SevenSeg(6 downto 0) This is a 7-bit vector that will drive the individual LEDs on the 7-segment
display. The MSB of this vector will correspond to the “a” LED while the
LSB of this vector will correspond to the “g” LED.

Update the VHDL entity to reflect the new output port SevenSeg(6 downto 0). Figure 6.5 shows how the entity
should look.

@Text Editor - C:/Users/k91h784/Desktop/Logic_Lab/Lab_06p1_SevenSegD... - a X
Eile Edit View Project Processing Tools Window Help ‘Search altera.com °
AN EENMRS 000 I=E

1 =entity top is A

2 = port (Sw : in  bit_vector (3 downto 0);

3 LEDR : out bit_vector (3 downto 0);

4 Prime . lout bix;

5 Sevenseg : out bit_vector (6 downto 0));

6 end entity;

7 v
< >

0%  00:00:00

Figure 6.5
VHDL Entity for 7-Segment Decoder
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Enter the Functionality for the 7-Segment Decoder to the VHDL Architecture

Now you will enter the functionality for the 7-segment decoder. Leave all of the VHDL functionality from lab 5.1 in
your architecture. You can enter the functionality for the 7-segment decoder directly from the table in Figure 6.3. You
can use either a conditional or selected signal assignment to model the decoder. Consider the following two code
examples to get you started.

Example of a conditional signal assignment:

SevenSeg <= “1111110” when (SW = *““0000”’) else
0110000 when (SW = “0001”) else
“1101101” when (SW = *“0010”) else -- remaining functionality goes below..

Example of a selected signal assignment:

with (SW) select
SevenSeg <=%1111110" when ‘0000,
““0110000” when “0001”,
1101101 when “0001”, -- remaining functionality goes below..

After completing your model for the 7-segment display, save your design and perform a “Compile All". Fix any
syntax errors you may have and repeat compiling until all of the tasks complete 100%.

Assign the Pins for the 7-Segment Decoder Ports

Once your design successfully compiles, you can assign the pins for the SevenSeg port and update the assignment
for Prime. Open the pin planner tool using the pull down menus: Assignments - Pin Planner. You should see existing
assignments for the SW, LEDR, and Prime ports. You will leave the SW and LEDR assignments as is. You will need
to update the pin assignment for the port Prime to reflect the pin connection shown in Figure 6.1. The updated pin
assignments should be made as follows:

e Prime PIN_J11
e SevenSeg[6] PIN_A12
e SevenSeg[5] PIN_B12
e SevenSeg[4] PIN_B13
e SevenSeg[3] PIN_D13
e SevenSeg[2] PIN_G17
e SevenSeg[l] PIN_J18
e SevenSeg[0] PIN_G11

Also change the “I/O Standard” settings for the output ports to “3.3-LVCMOS” and the “Current Strength” settings
to “Maximum” for Prime and SevenSeg. When complete, your assignments should look like the settings in Figure 6.6.



74 + Chapter 6: MSI Logic

& Pin Planner - CyUsers/ka1h7a4/ Deskron/Logic Lab/Lab 061_SevensegDecoder/Lab_06i1_SevensegDecoder - top = o *
Eile Edit Yiew Processing Toals Window Help Scarchalteracom @
e
et ne V-
y| Report notavailable velone Symbol Pin Type £
. o N
Q 8 y User IfO
¥ Y User assigned /O
Fitter assigned |/O
e
Groups | Report [ ] Unbonded pad
1 B Reserved pin
v [ ] p
= £ DEV_CE
ol g fad DIFF n
bl
T P Hun 1[0 Assignment Analysis ¥ o DIFF
L = 2 G} DIFF n qutput 2,
g ¢ Namesf |- Edit LEDRI3 Filter: Pins: all
H NedeName  Direction Location IfOBank  VRAEFGroup  FitterLocation  |/O Standard  Reserved  CurentSuength  SlewRate rential
% .ETEEn Gutput PIN_Y3 24 B2A_NO PIN_Y3 25V 12mA (default) 1 idefauly
< LEDR[?] Gutput PIN w2 2 B2 KO PIN_ W2 25V 12mA {default) 1 {ddefault)
= eLEDRIT] Output FIN_AAT 24 B2A NO PIN_AAT 25v 12mA (default) 1 (defauly)
W |<Leprio) Gutput PIN_AA2 2 B2A_NO PIN_AA2 25V 12mA idefaulth 1 idefault)
«Prime Gutput PIN 111 7A B74 NO PIN_AT2 33V LveMOS maximum current 1 {default)
-Sevenseg[e]  Output FIN_AT2 in B7A_NO PIN_N2 33VLVCMOS maximum current 1 (defaul
“SevenSegl5]  Output PIN_B12 7 B7A_NO PIN_U2 33-VLVEMOS maximum current 1 (default)
wSevenSegls]  Output PIN 813 7A B7A KO PIN U1 33V LVeMOS maimum current 1 default)
-Sevenseg[3]  Output PIN_D3 A B7A_NO PIN_LT 33-VLVCMOS maximum current 1 (defauly
“Sevensegl2l  Qutput PIN_017 7 B7A_NO PIN_N1 33-VLVEMOS maximum current 1 idefaultl
wSevenSegl1]  Output PIN a8 7A B7A Ko PIN L2 33V LVeMOS maximum current 1 (defaull)
-Sevenseg0]  Output PIN.GT1 A B7A_NO PIN_E2 33-VLVCMOS maximum current 1 defauly
»SWI31 Input PIN_T12 4A BAA_NO PIN_T12 25V 12mA (default)
s SWE2] Input PIN_T13 I BaA_No PIN_T13 25V 12mA (defaull)
w5 SW[1] Input PIN_V13 4A B4A_NO PIN_V13 25V 12mA (default)
£ |+ 5wio] Input PIN_UM3 4A BAA_NO PIN_U13 25V 12mA (default) v
F< >
0%  00:00:00

Pin Assignments for 7-Segment Decoder

Close the Pin Planner tool using the pull-down menus: File &> Close. Recompile your design with the new pin
assignments using the “Compile All" task.

Connect the DEO-CV board to your Breadboard

Now you are going to connect the DEO-CV board to your breadboard. Refer to figures Figure 6.1 and Figure 6.2
for the details of the connection. Make sure that the DEO-CV board is not plugged into your computer when doing the
wiring. You will use 10x female-to-female jumper wires to make the connection for this exercise. These jumper wires
will plug onto ten of the 0.1” pins on the GPIO_1 connector on the DEO-CV board. On the bread board side, you should
use the 0.1" header pins to interface the female receptacle to your breadboard. One jumper wire will be used to connect
the ground of the DEO-CV to the ground rails of your breadboard. A second jumper wire will be used to provide +3.4v
to the power rails of your breadboard. Then seven additional jumper wires will connect the outputs of the 7-segment
decoder logic to your character display on your breadboard. Finally, a tenth jumper wire will connect the Prime output
to the LED in your LED-driver circuit. You should also add a jumper wire on your breadboard to connect Prime to the
input of your buzzer.

Once the connection is complete, plug in the USB cable between the DEO-CV board and your computer. Turn on
the DEO-CV board using the red power button. You should be able to toggle the slider switches on your breadboard
and see the LEDs in your LED-driver circuit turn on/off. This verifies that your breadboard is receiving power and
ground.

Program the FPGA with your 7-Segement Decoder Design

Now you are ready to download your design to the FPGA. When you launch the programmer tool (if it isn’t already
running), it will automatically point to the updated top.sof file to be downloaded. You will be able to simply click “Start”
on the programmer to download your design.

Test your 7-Segment Decoder Design

Test your 7-segment decoder by cycling through all possible 16 input codes on the DEO-CV slider switches and
observing the outputs on the 7-segment display of your breadboard. For each input that is a prime number, your Prime
output should assert the LED and buzzer on your breadboard. If your design is not working correctly, you will need to
debug it. A few tips on debugging:

e If an LED segment in your display is not lighting up, ensure it is wired correctly. You can do this by
taking the wire that is to be attached to the FPGA pin and instead plug it into the power rail of your
breadboard. This will drive the LED directly and ensure that you have the resistor and character display
pin correctly wired.
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e If an LED segment still doesn’t light up, check pin planner in Quartus.

Take a short video (<5 s) showing the proper operation of your 7-segment display decoder. You should show that
the correct character is displayed for the corresponding input code on the slider switches. You should also show that
the LED and buzzer on your breadboard assert for each prime number on the input. This video satisfies the
requirements for deliverable #1.

6.1.1.2 Save a Copy of your top.vhd for your Records

Save a copy of your top.vhd file for the second deliverable of this exercise. Recall that this file is located in your
main working directory. Go into your working directory for this project and locate this file. This file satisfies the
requirements for deliverable #2.

When you are done, close your project using the pull-down menus: File & Close Project. Exit Quartus using the
pull-down menus: File > Exit.

Lab 6.1 After completing this lab exercise, can you:

e Take advantage of design re-use by creating a new project by copying a prior design
in Quartus?

e Use concurrent signal assignment modeling techniques to create a 7-segment
decoder design in VHDL and implement it using the modern digital design flow?
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Chapter 7: Sequential Logic Design

Lab 7.1: 4-Bit Ripple Counter & Switch Debouncing

7.1.1 Objective

The objective of this lab is to introduce discrete sequential logic circuits. This lab will cover the design of a ripple
counter using discrete D-flip-flops. This lab will then examine the behavior of mechanical switches and introduce
debounce circuitry that helps provide clean edges from a switch by taking advantage of the storage capability of an
S'R’ latch.

7.1.2 Learning Outcomes
After completing this lab you should be able to:

e Design a ripple counter using discrete D-flip-flops.

e Explain why mechanical switches produce unclean edges.

e Explain how a NAND-debounce circuit works.

e Setup an oscilloscope for a single-shot measurement.

e Demonstrate the response of a mechanical switch before and after applying a NAND-debounce circuit.

7.1.3 Parts Needed

e Breadboard + wires.

e Analog Discovery 2.

e  2x 74HC74 dual, rising edge triggered D-flip-flop ICs.
e 4x, 150 Q axial resistors.

e 4, discrete red LEDs.

e  Push button switch, SPDT.

e 1x 74HCOO0 2-input NAND gate IC.

e 2x 1k Q axial resistors

7.1.4 Deliverables
The deliverable(s) for this lab are as follows:

1. Demonstrate a 4-bit ripple counter implemented with discrete D-flip-flops. The counter will be clocked
by the AWG and the outputs will be observed on LEDs. (40% of exercise).

2. Take a logic analyzer measurement of the 4-bit ripple counter (20% of exercise).

3. Demonstrate the break-before-make and contact bounce behavior found in mechanical switches. You
will clock your counter using a simple push button switch and observe the unclean clock edges into your
counter using a single-shot measurement on the oscilloscope. (20% of exercise).

4. Demonstrate a NAND-debounce circuit that produces clean logic transitions for the clock of your ripple
counter. This will be implemented on your push button switch and observed using a single-shot
measurement on the oscilloscope (20%of exercise).

7.1.5 Lab Work & Demonstration
7.1.5.1 Implement a 4-Bit Ripple Counter using D-Flip-Flops

A ripple counter is made from D-flip-flops that are connected in a toggle flop configuration (e.g., the Qn output is
wired back to the D input). This configuration provides an output on the Q of the D-flip-flop that has a frequency exactly
¥ of the incoming clock. An inverted version of this divided down signal (e.g., Qn) can then be used to clock the next
stage of the counter to provide a signal that is ¥ of the original clock. These divided down signals provide a simple

77
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binary counter and can be scaled to whatever size is desired by adding more D-flip-flops. Figure 7.1 shows the logic
diagram of a 4-bit ripple counter.

Bit(0) Bit(1) Bit(2) Bit(3)

e e g e

Clock ——> Qn D an D an D an

Figure 7.1
Logic Diagram of a 4-bit Ripple Counter Created with Discrete D-flip-flops

Breadboard the 4-Bit Ripple Counter

Breadboard the 4-bit ripple counter shown in Figure 7.1 using the 74HC74 discrete D-flip-flops provided in your
lab kit. Note that each of these parts contains two separate D-flip-flops. Also note that each D-flip-flop has dedicated
reset (CLRn) and preset (PREn) inputs. To enable the D-flip-flop, both of these pins should be pulled to a logic 1 (de-
asserted) by wiring the pins to Vcc. Keep in mind that both D-flip-flops have the CLRn and PRERn lines, so you will
need FOUR wires for each 74HC74 part. Connect the 4-bit output of your counter to 4x resistor-LED circuits. You
should use discrete 150 Q axial resistors in series with discrete red LEDs with their cathodes connected to GND.

Connect the power and GND of the Analog Discovery to the power and ground rails of your breadboard. Also
connect the AWG channel 1 (W1) of the Analog Discovery to the clock input of the ripple counter. Finally, connect
logic channels 0, 1, 2, and 3 to the outputs of the ripple counter. Your connection should look like Figure 7.2.

Analog Discovery Analog Discovery  Analog Discovery
(+3.4v and GND) (AWG Channel 1) (Logic Analyzer)

---------------
..............

Vanagoem Wi i i | e

ADIGILENT

-

4-Bit Ripple Counter Implemented 150o0hm
with 74HC74 D-Flip-Flops Resistors

Figure 7.2
Breadboard Connections for the 4-Bit Ripple Counter
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Configure the Analog Discovery

Launch Waveforms. Configure the power supply to output a +3.4v DC voltage for your breadboard. Run the power
supply tool to power your breadboard.

Next, configure channel 1 of the AWG to output a square wave with the following settings:

e Type = Square

e Frequency = 4 Hz
o Amplitude =17V
o Offset=1.7V

e  Symmetry = 50%
e Phase=0°

Enable the AWG by pressing the “Run” button.

Test your Ripple Counter

At this point you should see a 4-bit binary counter on your LEDs. Take a short video (<5 s) showing the proper
operation of your counter. This video satisfies the requirements for deliverable #1.

7.1.5.2 Take a Logic Analyzer Measurement of the 4-Bit Ripple Counter

Now we want to take a logic analyzer measurement of the 4-bit counter. First, set the frequency of the AWG to 1
kHz so that we can see more data on the screen of the measurement. In the logic analyzer tool, create a new bus
called “Ripple_CNT” and add channels 0, 1, 2, and 3 to it. Run the logic analyzer by pressing the “Run” button. Set
the position to 0 s and the timescale to 5 ms/div. Observe both the expanded view of the bits within the counter and
the bus view. The bus view will display the decimal value of the counter by default. You should see the counter
increment from 0 to 15 and then roll-over and start counting at 0 again. Your measurement should look like Figure 7.3.
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Figure 7.3
Logic Analyzer Measurement of 4-Bit Ripple Counter

Take a screenshot of the logic analyzer measurement of the ripple counter. Save the image in JPG format with a
descriptive file name. This image satisfies the requirements for deliverable #2.

7.1.5.3 Observing Issues with Mechanical Switches

One way to generate a clock edge for a sequential circuit is using a mechanical push button. Figure 7.4 shows a
circuit for a simple clock generator using a SPDT switch. Notice that when the button is not pushed, the clock output
is a logic 0 because it is connected to GND through the switch. When the button is pushed, the clock output is a logic
1 because it is connected to Vcc through the switch. In theory, this circuit should produce a rising edge of a clock each
time the button is pressed; however, there are a variety of issues when using mechanical switches to produce logic
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transitions. These include the break-before-make characteristic of a SPDT switch and bounce associated with the
mechanical contact within the part. Refer to the section on switch bounce in Chapter 7 of the textbook describing these
issues. In this part of the lab exercise, we will observe these issues with an oscilloscope.

A BAD CLOCK CIRCUIT

Vee
V' N

—

<
P
J_ PB1
————e Clock

Figure 7.4

Generating a Clock Directly from a Mechanical Switch

Clock your Ripple Counter with the “Bad” Clock Generation Circuit

Breadboard the bad clock generation circuit in Figure 7.4 and drive the input clock of your 4-bit ripple counter with
it. You will need to first disconnect the AWG. In waveforms, turn off the AWG and then disconnect it from your
breadboard. Connect oscilloscope channel 1+ of the Analog Discovery to the clock signal being generated by your
switch circuit. Connect the channel 1 reference (1-) to the ground rail of your breadboard. Your connection will look
like Figure 7.5.

SPDT Mechanical Switch wired to
produce rising edge when pressed

' ANALOGET /!
DISCOVERY|

]
ADIGILENT

Analog Discovery Oscilloscope Connection
to Observe the Clock Edges

Figure 7.5
Breadboard Connections for the Mechanical Switch Clock Generator

You should now be able to press the switch and see your ripple counter change patterns. Notice that it will not
always increment by 1 on every press. Instead, it may jump 2 or 3 counts per press. This is because the switch is not
producing a clean clock edge. The break-before-make behavior and bouncing of the contact can cause multiple clock
edges to be produced for each press.

Take a Single-Shot Oscilloscope Measurement of the Switch Clock Edge

Setup the oscilloscope to measure the clock edge waveform. To setup the oscilloscope for this measurement, first
launch the Scope tool in waveforms. Configure the time settings to zoom in on the rising edge and position the
measurement in the middle of the screen horizontally as follows:
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e Position=0s
e Base = 0.5 us/div

Configure the Channel 1 settings to position the waveform in the middle of the screen vertically as follows:

e Offset=-15V
e Range = 0.5 V/div

Now configure the trigger to take a single shot measurement. This type of measurement will only acquire data
when it sees the trigger condition. Once the trigger condition is observed, the oscilloscope will fill the screen with data
and then stop. This allows you to measure events that are not periodic or that occur infrequently. The trigger settings
for the scope tool are along the top of the measurement screen. Configure these as follows:

e Mode = Normal

e Source = Channel 1
e Condition = Rising
o level=17V

Now press the “Single” button. You will see the status of the oscilloscope is now Armed and waiting for the trigger.
Once you press the switch on your breadboard, the oscilloscope will see the rising edge, trigger, fill the screen with
data, stop, and display its status as Done. Press the switch and observe the waveform. You should repeat this
measurement (i.e., press “Single”, then press the switch) until you get a rising edge that exhibits both the break-before-
make behavior and switch bounce. An example measurement showing both behaviors is shown in Figure 7.6.
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Figure 7.6

Oscilloscope Measurement of Switch showing Break-Before-Make and Bouncing Behaviors

Take a screenshot of the oscilloscope measurement of your switch output. Save the image in JPG format with a
descriptive file name. This image satisfies the requirements for deliverable #3.

7.1.5.4 Debouncing Mechanical Switches

Figure 7.7 shows a NAND-Debounce circuit. This type of circuit eliminates the problems with SPDT mechanical
switches observed in the prior measurement. This circuit by taking advantage of the storage capability of an S'R’ latch.
This circuit will hold the past value when the switch contact is in the break (or unconnected) zone. This handles the
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initial issue observed in Figure 7.7 as the output will hold a zero when the switch contact enters the no-contact portion
of the transition. This circuit also handles the final issue observed in Figure 7.7 because once the switch contacts Vcc,

it will then bounce between VCC and open. The NAND-debounce circuit will hold a one in this situation as the switch
contact bounces between Vcc and no-contact.

A CLOCK CIRCUIT w/ NAND-DEBOUNCE

VCC
1k Q
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.
r’: PB1
l Vee
1k Q
Clock
Figure 7.7

NAND-Debounce Circuit for SPDT Mechanical Switches

Breadboard the circuit in Figure 7.7 and use its output to drive your ripple counter. Repeat the single-shot
oscilloscope measurement to observe the new clean clock edge. Your clock edge will now look similar to Figure 7.8.
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Figure 7.8

Oscilloscope Measurement of Debounced Switch Output

Take a screenshot of the oscilloscope measurement of your debounced switch output. Save the image in JPG
format with a descriptive file name. This image satisfies the requirements for deliverable #4.
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Lab 7.1 After completing this lab exercise, can you:

e Design a ripple counter using discrete D-flip-flops?

e Explain why mechanical switches produce unclean edges?

e Explain how a NAND-debounce circuit works?

e Setup an oscilloscope for a single-shot measurement?

o Demonstrate the response of a mechanical switch before and after applying a NAND-
debounce circuit?
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Lab 7.2: 3-Bit Binary Up/Down Counter

7.2.1 Objective

The objective of this lab is to gain experience implementing finite state machines using discrete parts. You will
design and implement a 3-bit binary up/down counter.

7.2.2 Learning Outcomes
After completing this lab you should be able to:

e Design and implement a 3-bit binary up/down counter using discrete parts.
e Use a push button circuit to provide the reset to your counter.

7.2.3 Parts Needed

e Breadboard + wires.

e Analog Discovery 2.

e  2x 74HC74 dual, rising edge triggered D-flip-flop ICs.

e 3x, 150 Q axial resistors.

e  3X, discrete red LEDs.

e  Push button switch, SPDT.

e Avariety of HC74 discrete logic ICs to implement combinational logic functions.

7.2.4 Deliverables
The deliverable(s) for this lab are as follows:

1. Provide a final logic diagram for the 3-bit counter (10% of exercise).

2. Demonstrate a 3-bit binary up/down counter FSM with discrete components. The counter will be
clocked by the AWG, the outputs will be observed on LEDs, and the reset will be provided by a SPDT
switch. (90% of exercise). If you are unable to get a 3-bit counter working, you can implement a 2-bit
binary up/down counter that is worth 60%.

7.25 Lab Work & Demonstration
7.2.5.1 Design the 3-Bit Binary Up/Down Counter

You are now going to design the finite state machine to implement the 3-bit binary up/down counter by hand. You
should document each step in the process so that you can reference it later if you have issues with the implementation.
Your counter will have an input called “Up” that will dictate the direction of the counter. When Up=1, the counter will
increment on each rising edge of clock. When Up=0, the counter will decrement. You should call your output “Count”
with the individual bits being called Count(2), Count(1), and Count(0).

Create the State Transition / Output Table

Since a counter traverses its states in a linear pattern, we typically skip the state diagram step and go straight to
the state transition / output table. Create your table in the space below. For your counter, you will use state-encoded
outputs. This means you will encode the states in binary and allow the states themselves to be the outputs of the
counter. This will allow you to assign the state variables in the initial version of the table. Label your current state
variables Q2_cur, Q1_cur, and QO_cur. Label your next sate variables Q2_nxt, Q1_nxt, and QO0_nxt. Remember that
you will need to list your input Up in the table as it will dictate the next state for each row.
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Derive the Logic Expression for Q2 nxt

Remember that each next state variable (Q2_nxt in this step) will depend on the current state variables (Q2_cur,
Q1_cur, QO_cur) and the input Up. This means you will use a 4-input K-map to derive this logic expression.

Derive the Logic Expression for Q1 nxt
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Derive the Logic Expression for Q0 nxt

Derive the Logic Expressions for the Output signals Count

Since you will be using state encoded outputs, the logic expression for each output (Count(2), Count(1), and
Count(0)) is simply setting it equal to their respective current state variable (Q2_cur, Q1_cur, QO0_cur). Despite this
being a simple set of logic expressions, it is good design practice to document all logic in your system. Enter the logic
expressions for the three output bits below.
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Draw the Final Logic Diagram

Now draw the final logic diagram. You will need 3x D-flip-flops to hold the 3-bit state codes. You can simply list
the input variable names for your next state logic circuits (instead of physically drawing in all of the connections). This
will make the diagram more readable. Save an image of your logic diagram. If you drew your diagram manually, you
can take a picture and as a JPG. If you created your logic diagram electronically, save it as a JPG. This image
satisfies the requirements for deliverable #1.
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7.2.5.2 Implement the 3-Bit Binary Up/Down Counter

Now implement the logic diagram you designed on your breadboard using discrete parts. Your implementation
should follow these guidelines:

Your breadboard will be provided power and ground from the Analog Discovery. Connect the Analog
Discovery’s power and GND to the power rails of your breadboard. When you are ready to test your
design, you will need to configure the power supply in Waveforms to output +3.4 v and enable.

Your counter will receive its clock from the AWG of the Analog Discovery. You should connect channel
1 (W1) of the Analog Discovery’s AWG to the clock inputs of your counter. Remember that all three D-
flip-flops need to receive the same clock. When you are ready to test your design, you will need to
configure the AWG to output a 4 Hz square wave with an amplitude of +1.7 v and an offset of +1.7 v.
Your “Up” input will come from one of the slider switches in your LED driver circuit. You can access the
switch output by adding a wire to the node where one of the paths connects to the 10 kQ pull-down
resistor. The Up is used in your next state logic circuits.

You will need to create a reset line for your D-flip-flops using your push button SPDT switch. You do
not need to debounce the switch. You will simply have it drive a logic 1 to all resets in your counter (i.e.,
reset is deasserted) when the switch is not pressed. When the switch is pressed, it should drive a logic
0 to all resets in your counter (i.e., reset is asserted) to put the FSM into its reset state.

You will drive the 3-bit output of your FSM (Count) to three discrete red LEDs. Each of the LEDs will be
connected in series with a 150 Q resistor. The cathode of the LED should be connected to ground.

Take a short video (<5 s) showing the proper operation of your counter. You should show that you can reset the
FSM and also change the direction of the counter output. This video satisfies the requirements for deliverable #2.

Lab 7.2 After completing this lab exercise, can you:

e Design and implement a 3-bit binary up/down counter using discrete parts?
e Use a push button circuit to provide the reset to your counter?
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Lab 7.3: 4-Bit Binary Up/Down Counter Finite State Machine (in VHDL)

7.3.1 Objective

The objective of this lab is to gain experience designing finite state machines using VHDL. The state machine will
implement a 4-bit binary, up/down counter using a combination of structural VHDL and concurrent signal assignments.
The counter will be implemented on an FPGA where its output will be displayed on LEDs in addition to serving as inputs
to the 7-segment decoder and prime number detector from prior labs.

7.3.2 Learning Outcomes
After completing this lab you should be able to:

e Design a finite state machine using a combination of structural VHDL for the state memory and
concurrent signal assignments for the next state and output logic.

e Instantiate a pre-designed VHDL file into a Quartus project to be instantiated as a component
(dflipflop.vhd).

7.3.3 Parts Needed

e Breadboard + wires.

e DEO-CV FPGA board.

e Analog Discovery.

e 7-Segment display circuit from prior lab (7-segment display, 7x 150 Q resistors).

e LED driver circuit from prior lab (8-position slider switch, 10 k[J resistor network, 330 kQ resistor
network, 5x red LEDs, 1x 74HCO04 inverter IC).

e  Buzzer circuit from prior lab (magnetic buzzer, 2N3904 NPN transistor, 1N4002 diode, 10 kQ axial
resistor).

e 10x female-to-female jumper wires.

7.3.4 Deliverables

The deliverable(s) for this lab are as follows:

1. Demonstrate a finite state machine implemented in VHDL to create a 4-bit, binary, up/down counter.
The counter will be displayed on red LEDs of the DEO-CV board in addition to drive the inputs to a 7-
segment display decoder + 4-input prime number detector (90% of exercise).

2. Provide your top.vhd design file (10% of exercise).

7.3.5 Lab Work & Demonstration
7.3.5.1 Implement the FSM for the 4-Bit Binary Up/Down Counter

You are going to design a Finite State Machine (FSM) that produces a 4-bit, binary up/down counter in VHDL. You
will be provided a VHDL model for a D-Flip-Flop (dflipflop.vhd) that you will instantiate in your design for the state
memory of the state machine. You will create the next state and output logic using conditional signal assignments.
The FSM will have an input called Up that will come from SWO0 on the DEO-CV board. The clock for the FSM will come
from the AWG of the Analog Discovery, which will be connected to a pin on the GPIO_1 connector. The reset for the
FSM will come from the KEY_4 push button the DEO-CV board. The 4-bit counter output will be displayed on the 4x
red LEDs on the DEO-CV board (LEDR3, LEDR2, LEDR1, and LEDRS3). Internal to the FPGA, the 4-bit counter will
drive the pre-designed 7-segment decoder logic and prime number detector from lab 6.1. As in lab 6.1, the outputs of
the 7-segment decoder interfaced to your breadboard where they will drive the 7-segment character display and the
prime number detector output will drive an LED, and the buzzer. Figure 7.9 shows a block diagram of the FSM system.
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Figure 7.9
Block Diagram of the 4-Bit Binary, Up/Down Counter System

Figure 7.10 shows a picture of the FSM system.
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Picture of the 4-Bit Binary, Up/Down Counter System on the DEO-CV Board + Breadboard Interface

Breadboard the FSM System

Breadboard the system in Figure 7.9 and Figure 7.10. The power for the breadboard will come from the DEO-CV
board; however, at this point don’t turn on the DE-CV or enable any of the Analog Discovery tools.

Design the State Transition / Output Table for the Counter

The first step in this design is to document the desired behavior of the 4-bit counter. Since counters traverse their
states linearly, we can skip the state diagram step of the design and move directly to the state transition table. The
state transition table will be very important for this lab because you will be implementing the next state logic and output
logic circuitry in VHDL using conditional signal assignments and the functionality can be typed directly in from the table.
A template for the state transition table is provided in Figure 7.11. The first two rows are filled in to help get you started.
Fill in the remaining boxes for the counter.
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State Transition / Output Table for the 4-Bit Counter FSM

Create a New Quartus Project by Copying Lab 6.1

We are now going to create a new Quartus project for this design. We want to re-use the 7-segment decoder and
prime number detector logic from lab 6.1, so we will create this new project using the Copy Project feature in Quartus.
Open Quartus. Next, open the lab 6.1 project. Next, copy the project to a new folder using the file pull-down menus:
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Project — Copy Project. You should name the folder and project “Lab_07p3_4bit_Cnt_FSM”". After clicking “OK”, make
sure to verify that you want to create the new folder for this project.

Add the dflipflop.vhd File to your Project

A VHDL model for a rising edge D-flip-flop has been provided for you. You will want to include this in your project
and the instantiate it to implement the state memory of your FSM. Download the dflipflop.vhd file and place it in your
project directory. It should be in the same directory as your top.vhd.

Use the pull-down menus to add this file to your project: Project > Add / Remove Files in Project. The Settings
window shows in Figure 7.12 will appear.

7 Settings - top - O X
Category: Device/Board...
General Ll
Files Select the design files you want to include in the project. Click Add All to add all design files in the project
Libraries directory to the project.

WVIP Settings .

IP Catalog Search Locations File name: Add
Design Templates ‘ .

v Operating Settings and Conditions gy
Voltage File Name Type Library Design Entry/Synthesis Tool HDL Version Remove
Temperature top.vhd VHDL File <None> Default

vCompilation Process Settings dflipflop.vhd ~ VHDL File <None> Default Up
Incremental Compilation

VEDA Tool Settings Down
Design Entry/Synthesis st
Simulation
Board-Level

v Compiler Settings
VHDL Input

Verilog HDL Input

Default Parameters
TimeQuest Timing Analyzer
Assembler
Design Assistant
SignalTap Il Logic Analyzer
Logic Analyzer Interface
PowerPlay Power Analyzer Settings
SSN Analyzer

= Buy Software OK Cancel Apply Help

Figure 7.12
Adding Files to a Project in Quartus

Click on the browse button (the “..."”) and browse to the dflipflop.vhd file in your project directory. Select the file
and press “Open”. The dflipflop.vhd file will be added to your project. You need to move it down so that top.vhd is
above it in the list, indicating that top is still the highest level in the hierarchy. Highlight the dflipflop.vhd file, and press
the “Down” button the right. Once your settings are identical to Figure 7.12, click “OK”.

Update the VHDL Entity for the 4-Bit Counter System

In Quartus, double click on “top” to open top.vhd in an editor. We need to update the entity to add and modify the
ports from lab 6.1 to match the block diagram in Figure 7.9. We need to add three signals to our entity (Clock, Reset,
and Up) and remove the SW signal from lab 6.1 We will still use the ports LEDR, Prime, and SevenSeg. When
complete, your entity should look like Figure 7.13.



96 + Chapter 7: Sequential Logic

@Text Editor - C:/Users/k91h784/Desktop/Logic_Lab/Lab_07p3_4b.. — O X
File Edit View Project Processing Tools Window Help Search altera.com (]
et EEZNRHOIDY &E
1 =entity top is A
2 = port (Clock = iin: bik:
3 Reset = iin: bik:
4 Up = an bt
5 LEDR : out bit_vector(3 downto 0);
6 Prime : out birt;
7 SevenSeg : out bit_vector(6 downto 0));
8 |end entity; -
0
< >

0%  00:00:00

Figure 7.13
The VHDL Entity for the 4-Bit Counter FSM

Declare the D-flip-flop as a Component in your Architecture

In order to instantiate the D-flip-flop model you added, you need to first declare it in the architecture as a
component. Recall that component declarations go before the begin statement in the architecture. Your VHDL
component declaration should look like:

component dflipflop

port (Clock :in bit;
Reset :in bit;
D o in bit;
Q, Qn I out bit);

end component;

Declare the Next State and Output Logic Variables in your Architecture

Next, you need to declare signals to hold the current state, next state, and the output variables. These will all be
4-bit vectors. We'll call the current state variable Q_cur and the next state variable Q_nxt. The individual bits of these
vectors will be wired to the D-flip-flops components when instantiated. We should also create a vector for the Qn output
of the D-flip-flop called Qn_cur. We will create a 4-bit vector for the FSM output called Count. Recall that signal
declarations also go before the begin statement in the architecture. Your VHDL signal declaration should look like:

signal Q_nxt, Q_cur, Qn_cur : bit_vector (3 downto 0); -- FSM State Variables
signal Count : bit_vector (3 downto 0); -- FSM Outputs

Instantiate the D-flip-flops to Implement the State Memory of the FSM

You are now ready to start implementing the behavior of your state machine. The first part of the state machine is
the state memory. Recall that state memory is simply a set of D-flip-flops that hold the current state variables on their
Q outputs. The D-flip-flops receive the next state codes on their D inputs. Since a FSM is synchronous, all D-flip-flops
receive the same clock and reset. To implement a 4-bit counter, we will have 16 states and require 4x D-flip-flops.
Each D-flip-flop will be port mapped to a corresponding bits of the current and next state vectors. You should instantiate
four versions of the D-flip-flop as follows:

DFFO : DFflipflop port map (Clock, Reset, Q_nxt(0), Q_cur(0), Qn_cur(0));
DFF1 : Dflipflop port map (Clock, Reset, Q nxt(1l), Q _cur(l), Qn_cur(l));

DFF2 : Dflipflop port map (Clock, Reset, Q _nxt(2), Q_cur(2), Qn_cur(2));
DFF3 : Dflipflop port map (Clock, Reset, Q_nxt(3), Q_cur(3), Qn_cur(3));

Design the Next State Logic of the FSM

Next, you need to implement the next state logic for the FSM. We will do this using a conditional signal assignment.
One of the advantages of using vectors for Q_nxt is that assignments can be made to it 4-bits at a time. This greatly
simplifies the amount of VHDL that needs to be written to create the 4x next state logic circuits. The next state logic
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depends on both the current state (Q_cur) and the input (Up). A conditional signal assignment makes handling the
input variables straightforward as a Boolean and condition can be used. Consider the following approach to modeling
the next state logic for this FSM. Notice how both Q_cur and Up are considered in the assignment.

Q_nxt <= "0001" when (Q_cur="0000" and UP="1") else

"*0010" when (Q_cur="0001" and UP="1") else
""0011"™ when (Q_cur="0010" and UP="1") else -- rest of the logic goes below

Since there are 5 bits of inputs in this statement (4x for Q_cur and 1x for Up), your full conditional signal assignment
will have 32 separate conditions. These conditions can be entered directly from the table in Figure 7.11. Complete the
VHDL model for your next state logic.

Design the Output Logic of the FSM

In this FSM, we are using state-encoded outputs. This means we have encoded the states in a form that matches
the counting pattern we desire (i.e., binary) and the code for each state will be the actual output. To model this behavior,
we can create a single signal assignment as follows:

Count <= Q_cur;

At this point your FSM model is complete. You have created the three portions of the FSM using a combination of
structural design (i.e., instantiating D-flip-flops for the state memory) and concurrent signal assignments (i.e., the
assignments for the next state and output logic).

Update the Prime Number Detector Model to use Count as its Input

In the prime number detector model that was copied from lab 6.1, the signal assignments were based on the input
SW. In this lab, we want the prime number detector to base its outputs on Count. Update the VHDL model to reflect
this change.

Update the 7-Segment Decoder Model to use Count as its Input

In the 7-segment display decoder model that was copied from lab 6.1, the signal assignments were based on the
input SW. In this lab, we want the 7-segment decoder to base its outputs on Count. Update the VHDL model to reflect
this change.

Compile the Design and Fix any Syntax Errors

Compile and synthesize your design by double clicking on “Compile All". Make sure to save your top.vhd file. Note
that we have not assigned the pins for the new ports in this design. We will first do a compile and then the pin planner
will reflect the new ports.

Assign the Pins for this Design

Launch the pin planner tool using the drop down menus: Assignments > Pin Planner. The first thing to do is to
delete the rows for SW. Highlight the rows for SW and press “Delete” on your keyboard. You will be asked to confirm
the operation for each row.

Next, you need to assign the locations for all of the new ports in this design. There are three new ports that need
pin assignments. Make the assignments for the location and associated 1/O standard as follows.

e Up PIN_U13 2.5V)
e Reset PIN_P22 2.5V)
e Clock PIN_H16 (3.3-V LVCMOS)

When complete, your assignments should look like Figure 7.14.



98 ¢ Chapter 7: Sequential Logic

& Pin Planner - C:/Users/k91h784/Desktop/Logic_Lab/Lab_07p3_4bit_Cnt_FSM/Lab_07p3_dbit Cnt_FSM - top = a X
File Edit View Processing Tools Window Help Search altera.com i
= Report ar| 10p view - wire sona Pin Legend o -
& Reportnotavaiable Cvclone V - 5CE BA4F23C7 P re—— ~
[} 4 User /O
! %) User assigned I/O
"; &) Fitter assigned I/O
Groups Report & Unbonded pad
- Tasks o . Reserved pin
v Early Pin Planning lal l:_-/ DEV_OE
= Early Pin Planning... n DIFF_n
= P Run 1/O Assignment Analys ¥ o DIFF_p
e < 2 I DIFF n output e
,n z; Named:* + = Edit: 3.3-VLVCMOS Filter: Pins: all
s Node Name Direction Location 1/0 Bank VREF Group  Fitter Location 1/0 Standard aserve Current Strength ewRa rel
LR Up Input PIN_U13 4A B4A NO PIN_U13 25V 12mA (default)
= Reset Input PIN_P22 5A B5A_NO PIN_P22 25V 12mA (default)
= s Clock Input PIN_H16 7A B7A_NO PIN_H16 3.3-V LVCMOS 2mA (default)
b | % SevenSeg[0] Qutput PIN_G11 7A B7A_NO PIN_G11 3.3-V LVCMOS maximum current (..1t)
' SevenSeg[1] Output PIN_J18 7A B7A_NO PIN_J18 3.3-V LVCMOS maximum current 1 (.14
“ SevenSegl[2] Output PIN_G17 7A B7A_NO PIN_G17 3.3-V LVCMOS maximum current 1 (.11
'« SevenSeg[3] Qutput PIN_D13 7A B7A_NO PIN_D13 3.3-V LVCMOS maximum current (..1t)
% SevenSegl[4] Output PIN_B13 TA B7A_NO PIN_B13 3.3-V LVCMOS maximum current (..lt)
' SevenSeg[5] Output PIN_B12 7A B7A_NO PIN_B12 3.3-V LVCMOS maximum current 1(.1t)
“ SevenSeg[6] Output PIN_A12 TA B7A_NO PIN_A12 3.3-V LVCMOS maximum current 1 (.19
' Prime Output PIN_J11 TA B7A_NO PIN_J11 3.3-V LVCMOS maximum current 1(..11)
«“ LEDR[0] OQutput PIN_AA2 2A B2A_NO PIN_AA2 2.5V 12mA (default) 1(.1)
% LEDR[1] Output PIN_AA1 2A B2A_NoO PIN_AA1 2.5V 12mA (default) (]
% LEDR[2] Output PIN_W2 2A B2A_NO PIN_W2 2SS 12mA (default) 1 (.1t
» [#LEDR[3] Output PIN_Y3 2A B2A_NO PIN_Y3 25V 12mA (default) (..1t)
£ <<new node>>
g€ >
0%  00:00:00
Figure 7.14

Pin Assignments for the 4-Bit Counter FSM

Close the pin planner tool using the pull down menus: File > Close

Re-Compile the Design and Fix any Syntax Errors

Re-compile and synthesize your design with the new pin assignments by double clicking on “Compile All”.

errors you encounter.

Program the FPGA with your 4-Bit Counter Design

Fix any

Now you are ready to download your design to the FPGA. Plug in the USB cable for the DEO-CV board and turn
it on using the red power button. Verify that the DEO-CV board is providing power to your breadboard by toggling your
slider switches in your LED driver circuit. You should see the corresponding LEDs turn on in your driver circuit.

In Quartus, double click on the “Program Device” task. Click “Start” on the programmer to download your design.

Turn on the AWG

Your design is ready to accept a clock from the AWG. Launch Waveforms and configure channel 1 of the AWG

to output a square wave with the following settings:

e Type = Square

e Frequency =4 Hz
e Amplitude =17V
o Offset=1.7V

e  Symmetry = 50%
e Phase=0°

Enable the AWG by pressing the “Run” button. Note that we are not providing power to the breadboard using the

Analog Discovery so no other tools are needed other than the AWG.
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Test your 4-Bit Counter Design

At this point you should see your system counting. The binary count will be displayed on the LEDRs of the DEO-
CV board and will be updated at a rate of 4 Hz. The corresponding hex symbol will be shown on the 7-segment display.
Whenever the code is a prime number, the LED and buzzer on the breadboard should assert. You should be able to
change the direction of the counting pattern by toggling SW0 on the DEO-CV. You should also be able to reset the
counter to 0 by pressing KEY_4 on the DEO-CV. Take a short video (<5 s) showing the proper operation of your FSM
system. This video satisfies the requirements for deliverable #1.

7.3.5.2 Save a Copy of your top.vhd for your Records

Save a copy of your top.vhd file for the second deliverable of this exercise. Recall that this file is located in your
main working directory. Go into your working directory for this project and locate this file. This file satisfies the
requirements for deliverable #2.

When you are done, close your Quartus project using the pull-down menus: File - Close Project. Exit Quartus
using the pull-down menus: File > Exit. Exit Waveforms. Turn off your DEO-CV board.

Lab 7.3 After completing this lab exercise, can you:

e Add a pre-existing VHDL file to a Quartus project to be used as a component?

e Implement the state memory of a FSM structurally by instantiating individual D-flip-
flops?

o Implement the next state and output logic of a FSM using continuous signal
assignments?
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Chapter 8: VHDL (part 2)

Lab 8.1: 7-Segment Display Decoder using a Process

8.1.1 Objective

The objective of this lab is to begin modeling combinational logic using a VHDL process and conditional
programming constructs. You will create the decoder logic in VHDL to drive one of the 7-segment displays on the DEO-
CV board (HEXO).

Note: As this lab exercise is commonly used as the starting point for the 2" course in the logic design sequence,
the steps to create a Quartus project from scratch will be repeated. These are the same steps that were covered in lab
5.1 Also of note is that all lab exercises from this point on will only use the DEO-CV board and the Analog Discovery.

8.1.2 Learning Outcomes

After completing this lab you should be able to:

e Use the Quartus toolchain to synthesize, technology map, place/route and implement a VHDL model on
an FPGA.

e Create a 4-input, 7-segment display decoder (016 to Fis) on an FPGA using a VHDL process and
conditional programming constructs.

e Use the std_logic_vector data type from the STD_LOGIC_1164 library.

8.1.3 Parts Needed
. DEO-CV FPGA board.

8.1.4 Deliverables
The deliverable(s) for this lab are as follows:

1. Demonstrate a VHDL design on an FPGA that drives the HEXO 7-segment display on the DEO-CV
board using the slider switches (SW3:SWO0) as inputs (90% of exercise).
2. Provide your top.vhd design file (10% of exercise).

8.1.5 Lab Work & Demonstration
8.1.5.1 Implement the 7-Segment Decoder in VHDL on the DEO-CV Board

You are going to design a 7-segment display decoder in VHDL using a process and a conditional programming
construct (ifthen or case). The decoder will take in the values from the slider switches on the DEO-CV board (SW3,
SW2, SW1, and SWO0) and display the corresponding HEX characters (016 to F16) on one of the 7-segment displays
(HEXO0). You will also drive the values of the slider switches on the red LEDs on the DEO-CV (LEDR). Figure 8.1
shows the block diagram for the system you will design. The pin numbers for each of the 1/0O used in this lab are shown
in red. Note that you will be creating your VHDL ports as vectors in order to simplify your model.
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Block Diagram of the 7-Segment Decoder System

Figure 8.2 shows the I/O on the DEO-CV that you will be using.
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Picture of the 7-Segment Decoder System on the DEO-CV Board
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Determine the Logic Functionality for the HEXO Decoder

Before you can model the decoder in VHDL, you need to determine the functionality you wish to model. You will
need to come up with the values to drive to the character display in order to generate the appropriate symbols for each
input code. Tabulate your logic using Figure 8.3. The character displays on the DEO-CV board use a common anode
configuration. This means to turn on an LED in the display, you need to drive it with a logic 0. Also note that we will
be using the naming conventions found in the DEO-CV user’s manual. In the manual the individual LEDs of the HEX
displays are labeled 0, 1, 2, 3, 4, 5, and 6. We will be defining a 6-bit VHDL port called HEXO that will drive these
individual bits. To make the signal conventions consistent, we will map bit O of the HEXO vector to LED 0 on the display
and bit 6 of the vector to LED 6.

SW(3 downto 0) HEX0(6 downto 0)

7-SegmentDispiay (0 0 0 0 |/I[1]{0|ofo[0oo
Tob
0 000O01 N
< |
5|6|1 0010
— 001 1)+

4| |2 - |
3 010 0f-
010 1|5
Common Anode ==
0=ON, 1=OFF 0110 jH
011 1|

e S o R S = |
10 0 0|kt

100 1|k

101 0
101 1[}
-
11003I—°-;
P
11011;'2
111 0[
111 1|5

Figure 8.3
Table for HEXO Display Logic
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Install the Quartus Lite Software (if not already installed on your computer)

The Quartus Lite software can be downloaded for free from www.altera.com. This will take you to an intel website,
which purchased Altera Inc. in 2016. Once on this page, click on “Support” and then “Downloads”. You will need to
create a free account. There you'll be given the option of downloading various versions of Quartus. You want to
download the “Lite” version. Click on the “Download” icon next to the Lite version. In the next screen you'll be given
options on what all should be downloaded. You want to select three items:

e Select edition: Lite

e Select release: “latest release, i.e., the highest number”

e  Operating System: windows (assuming you are on windows)
Download Method: Direct download

Then click on the “Individual Files” tab. Select the following files to download:

e  Quartus Prime (includes Nios Il EDS)
e ModelSim-Intel FPGA Edition (includes Starter Edition)
e Cyclone V device support

Then click “Download Selected Files”. It will ask you where to download the files. Choose your Desktop and select
“OK”. It will then proceed to download three files. The files are large so it will take a while. Once they are downloaded
to your desktop, double click on the Quartus install file (named something similar to “QuartusLiteSetup-17.0.0.595-
windows.exe”). This will automatically install the ModelSim software and the Cyclone V drivers that you downloaded
as long as they are in the same location (i.e., the Desktop). Accept the defaults for all options in the install.

When complete, it will ask if you want to install desktop icons, launch Quartus, and/or launch the driver install tool.
Select the option to launch the driver install tool. Follow the instructions to install the drivers for the DEO-CV board.
When you plug in the DEO-CV board in the next few steps, the driver installation will complete.

Create a Folder for to Hold All of your VHDL Projects (if not already created)

For each Quartus project, you will manually create a folder and then direct Quartus to put all design files into that
directory. We want to first create a main folder that will hold all of the project folders that will be created throughout this
manual to help us stay organized. We will create a folder on the Desktop called “Logic_Lab”. Right click on the Desktop
of your computer and select “New - Folder”. Give it the name “Logic_Lab”.

Create a Folder for this Exercise

Now we need to create the folder that will contain all of the Quartus files for this project. We want to name this
project something descriptive. Browse to your Logic_Lab folder that you created in the prior section and manually
create a folder called “Lab_08pl_7segment_decoder_using_process”.

Launch Quartus

On a windows 10 or equivalent machine, the Quartus application can be launched at: Start > Intel FPGA version
Lite Edition > Quartus (Quartus Prime version). Figure 8.4 shows the Quartus startup window that will appear.


http://www.altera.com/
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Figure 8.4
Quartus Startup Window

Create a New Project using the “New Project Wizard”

Click on the “New Project Wizard” button in the Home pane of the Quartus window. The Introduction window

shown in Figure 8.5 will appear.

Ok New Project Wizard

Introduction

The New Project Wizard helps you create a new project and
preliminary project settings, including the following:

o Project name and directory

0 Name of the top-level design entity
0 Project files and libraries

0 Target device family and device

. EDA tool settings

You can change the settings for an existing project and specify
additional project-wide settings with the Settings command
(Assignments menu). You can use the various pages of the Settings
dialog box to add functionality to the project.

] Don't show me this introduction again

< Back Finish Cancel

Help

Figure 8.5
Quartus New Project Wizard (Introduction)

Click on “Next” to go the next window. If you don’t want the introduction window to show up next time you run New
Project Window, you can check the box. The Directory, Name, Top-Level Entity window shown in Figure 8.6 will appear.
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Ok New Project Wizard X

Directory, Name, Top-Level Entity

What is the working directory for this project?
|4/DesktoprogiciLabjLabiosmjsegmentﬁdecoderﬁusin&process
What is the name of this project?

|LabJ8p177segment7decoderﬁusw’n&pmcess ‘
What Is the name ot the top-level design entity for this project? Ihis
name is case sensitive and must exactly match the entity name in the

Aacian fila

|top

Use Existing Project Settings...

< Back Einish Cancel Help

Figure 8.6
Quartus New Project Wizard (Directory, Name, Top-Level Entity)

For the working directory, «click on the *“..” button and browse to the “Logic_Lab/
Lab_08pl_7segment_decoder_using_process” folder you created on your desktop. This project folder will contain all
of the Quartus design files.

For the name of the project, enter “Lab_08pl_7segment_decoder_using_process”. Note that as you type this
name, Quartus automatically enters the same name for the top-level entity. You do not want to use this name as
your top-level entity.

For the top-level design entity, enter “top”. The term top is the standard naming convention for the VHDL file that
is at the highest level of hierarchy in the system. At the top level, the ports of the entity will be the physical pins of the
device. For this exercise, we will only have one top-level file. We will create this file (top.vhd) in a later step.

Click on the “Next” button. The Project Type window shown in Figure 8.7 will appear.

(G New Project Wizard X

Project Type
Select the type of project to create.

@ Empty project

Create new project by specifying project files and libraries, target
device family and device, and EDA tool settings.

O Project template

Create a project from an existing design template. You can choose
from design templates installed with the Quartus Prime software, or
download design templates from the Design Store.

< Back Finish Cancel Help

Figure 8.7
Quartus New Project Wizard (Project Type)

Leave the project type as “Empty” and click “Next”. The Add Files window shown in Figure 8.8 will appear.
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G New Project Wizard x

Add Files

Select the design files you want to include in the project. Click Add All to add all
design files in the project directory to the project.

Note: you can always add design files to the project later.

Eile name: Add
= S AddAl
File Name Type Library Design Entry/Synthesis Tool —HDL Versi e
up
< > Down
Specify the path names of any non-default libraries. User Libraries... ~Eroperties

< Back Einish Cancel Help

Figure 8.8
Quartus New Project Wizard (Add Files)

This window is where we can add existing design files. For this exercise we do not have any existing design files.
Instead, we will be creating a new file called top.vhd. We will do this later outside of the New Project Wizard. Do not
do anything in this window except click “Next”. The Family, Device & Board Settings window shown in Figure 8.9 will

appear.

(S New Project Wizard

Family, Device & Board Settings

Device Board

Select the family and device you want to target for compilation.
You can install additional device support with the Install Devices command on the Tools menu.

Tao determine the version of the Quartus Prime saftware in which your target device is supported, refer to the Device Support List webpage.

Device family Show in "Available devices' list
Eamily: Cyclone V (E/GX/GT/SX/SE/ST) Package: Any
Device: I Pin count: Any
Target device Core speed grade: Any
Auto device selected by the Fitter Name filter: 5CEBA4F23C7

® Specilic device selected in ‘Available devices' list [ Show advanced devices

QOther: nfa
Ayailable devices:

Name Core Voltage ALMs Total 1/0s GPIOs GXB Channel PMA GXEB Channel PCS PCle Hard IP
sceBAdF23CT 1.1V 18480 224 224 0

<Back Einish Cancel Help

Figure 8.9
Quartus New Project Wizard (Family, Device & Board Settings)

In this window we tell the Quartus synthesizer which device we will be targeting. Since we only installed the
Cyclone V FPGA family, only those devices will be shown. Notice that there are many different Cyclone V devices that
can be selected. We want to select the FPGA device that is on our DEO-CV board. We can begin filtering down the
selection by typing in the “Name filter” field on the right side of the pain. Begin typing 5CEBA4F23C7. After each
character is typed, it will reduce the number of devices that are available. Once you type the last character, there will
only be one device available. Highlight this device and click “Next”. The EDA Tool Settings window shown in Figure

8.10 will appear.
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(G New Project Wizard X

EDA Tool Settings

Specify the other EDA tools used with the Quartus Prime software to develop your praject.
EDA toals:

Toal Ty Tool Nan Formatis Run Tool Automatically

Desig... ‘<Nene> - sNone> | Run this tool automatically to synthesize the current design

Simula... sNone> * <Nane> Run gate-level simulation automatically after compilation
Board... Timing  <None> -

Symbel  <None> -

Signal |.. <Nane> -

Bounda... <None>

< Back Einish Cancel Help

Figure 8.10
Quartus New Project Wizard (EDA Tool Settings)

In this window you can direct Quartus to read files from various CAD tools from other vendors. For this exercise,
we will be using the Quartus tool by itself. Leave all the settings at <None> and click “Next”. The Summary window
shown in Figure 8.11 will appear.

(b New Project Wizard %

Summary

When you click Finish, the project will be created with the following settings:

Project directory: C:/Users/ka1h784/Desktop/Logic_Lab/Lab_08p1_7segment_decoder_using_process
Project name: Lab_8p1_7segment_decoder_using_process

Top-level design entity: top

Number of files added: 0

Number of user libraries added: o

Device assignments:

Design template: nfa
Farnily name: Cyclone V (E/GX/GT/SX/SE[ST)
Device: SCEBA4F23C7
Board: nfa
EDA tools:
Design entry/synthesis: <None> {<None>)
Simulation: <None> (<None>)
Tirning analysis: 0

Operating conditions:

Core voltage: 19V
Junction temperature range: 0-85°C
< Back Next > Cancel Help
Figure 8.11

Quartus New Project Wizard (Summary)

Review the settings in this window and if correct, click “Finish”. If any of the settings are incorrect, you can click
the “Back” button to go back and change them. You will now see a new blank project window with all of your settings
as shown in Figure 8.12.
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New Blank Project for the Cyclone V on the DEO-CV FPGA Board

Create the top.vhd File for this Project

Now we are ready to create the top.vhd file. In the Quartus window, use the pull-down menus to select: File >
New. Inthe New window that appears, select “VHDL File” under the Design Files group. Click “OK”.

Now we need to save the file and name it accordingly. In the Quartus window, use the pull-down menus to select:
File > Save As. By default, the name of the file should be called top.vhd and be located in your project directory.
Verify that these settings are correct (if not, fix them) and click “Save”. The top.vhd is now open for editing. If you
close this file it can be reopened by double clicking on it in the Project Navigator pane of the Quartus window.

Add the STD LOGIC 1164 Library

The first step in the design is to add any VHDL packages we will need. From this point forward, we will be using
the std_logic and std_logic_vector data types (instead of bit and bit_vector). These data types are found in the
std_logic_1164 library. You will always include the syntax to include this library at the top of all of your VHDL files going
forward. Add the following VHDL statements to the beginning of your top.vhd file.

library I1EEE;
use IEEE.STD_LOGIC_1164.ALL;

Enter the VHDL Entity

We are now ready to enter the VHDL entity for the design. The entity contains all of the ports for the system.
Based on the block diagram provided in Figure 8.1, the ports are:

e SW (3downto 0) This is the 4-bit input vector for the 4x slider switches on the DEO-CV board.

e LEDR (3downto 0) This is the 4-bit output vector for the 4x red LEDs on the DEO-CV board.

e HEXO (6 downto 0) This is the 7-bit output vector that will drive the 7x LEDs within the HEXO display
on the DEO-CV board.

Enter the following VHDL entity into your top.vhd. Notice that the entity name matches the file name in addition to
the name of the top-level of the design in Quartus. This tells Quartus that any ports that are declared will be connected
to pins on the FPGA board.

entity top is
port (SW : in std_logic_vector (3 downto 0);
LEDR : out std_logic_vector (3 downto 0);
HEXO : out std_logic_vector (6 downto 0));
end entity;

At this point your project should look like Figure 8.13. Notice that Quartus recognizes the VHDL syntax and will

color code based on the construct type.
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Figure 8.13
VHDL Entity for 7-Segment Display Decoder using a Process

Enter the VHDL Architecture

Now we are ready to enter the VHDL architecture. The first part of your architecture should drive the SW inputs
to the LEDR outputs. This can be done using a simple signal assignment. This does NOT need a process.

The second part of the architecture is the decoder logic. You should create a process to perform the decoding.
The process is implementing combinational logic so the sensitivity list should contain all inputs (i.e., SW). You can use
either if/then or case statements within the process to implement the decoder. You will need to include a final
assignment in your conditional statement that handles the assignment for ;all of the other possible input codes available
in the std_logic data type that were not explicitly listed. Implement the logic from your table in Figure 8.3. Remember
that the process is driving the output vector HEXO depending on the inputs SW.

architecture top_arch of top is
begin
LEDR <= SW;
-- Decoder process goes here..
end architecture;
Save your file using the pull-down menus File > Save.

Compile your Design

Now we are going to compile the top.vhd file and fix any errors. To launch a task in Quartus, you double click on
the desired task name within the Task pane on the left hand side of the window. Notice that underneath the task
“Compile Design” there are a handful of other tasks (i.e., Analysis & Synthesis, Fitter, etc.). When you click on “Compile
Design”, Quartus will run all of the lower-level tasks. If it encounters an error, it will stop at the task where the error
was found. If the task completes successfully, it will turn green. We typically allow Quartus to run as many tasks as it
can when we compile to attempt full synthesis of the design. To launch the compiler and synthesizer, double click on
“Compile Design”. This will take longer than a simple syntax check as Quartus is performing synthesis. The status of
the task will appear in the Messages window at the bottom of the pane. You will also see a status bar for each of the
tasks being performed. Once you have fixed any errors that have occurred and successfully completed the Compile
Design tasks, you will see the status in Figure 8.14.
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Figure 8.14
Quartus Window After Successful Compile and Synthesis

Assign the Ports to the Pins of the FPGA

We will now use a tool called Pin Planner to assign the ports of our top-level entity to the pins of the FPGA. Launch
Pin Planner using the pull-down menus: Assignments - Pin Planner. You will see a graphical depiction of the FPGA
with fields at the bottom to assign locations to any port that was in the entity during the most recent compile. At the
bottom of Pin Planner, enter the pin locations for the 15x I/O of the decoder from Figure 8.1. The pin numbers will go
in the “Location” column. Notice that there is a column called “Fitter Location” that has values for pin locations. When
pins aren’t assigned manually during the first compile, Quartus will make automatic pin assignments for you. We do
not want to use these locations. We want locations that correspond to the switches, LEDs, and HEXO pins we are
using in this exercise. To enter a value you can either click in the location field and type in the exact pin name or you
can double click in the field to access the drop-down menu of available pins. Once you are complete, you should see

the results in Figure 8.15.
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Figure 8.15
Quartus Pin Planner for the HEXO 7-Segment Decoder Project
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Pin Planner does not have a save option. Instead, you simply close it using the drop-down menus: File — Close.
Back in Quartus you’ll notice that the tasks are no longer green. This indicates that the design needs to be compiled
and synthesized again to take the new pin assignments into account. Double click on “Compile Design” and let it run
until all tasks have been completed successfully.

Program the FPGA

We are now ready to download the prime number detector design to the FPGA. Plug in the DEO-CV board to your
computer using the USB cable provided in the kit. You will power the DEO-CV board through the USB cable. You do
not need to plug in the AC adapter that is provided in the Terasic box. All of the FPGA designs in this manual are
small enough that the power from the USB cable is sufficient. Turn on the DEO-CV board by pressing the large red
power button. When the board comes on, it will run a program that is stored in its non-volatile memory that flashes the
1/0 in a variety of patterns. We will be overwriting this program with our own.

In the Quartus task pane, double click on “Program Device”. This will bring up the Programmer tool. In Quartus
versions 17 and newer, the programmer tool will automatically discover any devices on the board that the current design
will fit into. When the programmer finds the correct Cyclone V device, you will see the results in Figure 8.16. Notice
that the file containing the information on how to configure the FPGA to implement our design is output_files/top.sof.
The top.sof file is the end result of the Quartus synthesis and is what is to be downloaded to the FPGA.

@ Programmer - C:/Users/k91h784/Desktop/Logic_Lab/Lab_05p1_PrimeNumDet/Lab_05p1_PrimeNum... ~ — [a) x

If USB-Blaster isn't an option, you need to install the drivers
manually so it will appear:
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; This the key step: you browse to the following path:
ibs C:intelFPGA_lite\17.0\quartus\drivers\usb-blaster
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Next, install, etc.... follow prompts.

. The next time you relaunch the programmer in Quartus, you
Figure 8.16 o _ should be able to select USB-Blaster in the dropdown box
Quartus Programmer after Finding Device

7. Go to device manager in windows, go to USB controllers, right
click on “Altera USB-Blaster” (it will have a yellow warning flag)

If the programmer does not automatically find the device, you can press the “Auto Detect” button on the left of the
programmer window. Once it finds the device, you need to assign the top.sof file. Highlight the device, right-click, and
select “Add File”. Browse to the output_files folder and select top.sof. When using the programmer for the first time, it
may say “No Hardware” next to the hardware setup button. This means that the programmer is not using the correct
drivers for the DEO-CV board. Click on the “Hardware Setup” button. For the “Currently Selected Hardware”, use the
drop-down menus to select “USB-Blaster [USB-x]". Click “Close”. Now the programmer will use the proper drivers to
communicate with the DEO-CV board.

At this point we are ready to download the top.sof file to the FPGA in order to program it. Click on the “Start” button
on the left side of the programmer window. The status of the programming will be displayed in the status bar in the
upper-right corner of the window. When successful, it will say “100% (Successful)”.

Test your Design

Your design is now on the FPGA. You should be able to toggle the four slider switches on the DEO-CV and see
the red LEDs turn on/off accordingly and the proper symbol displayed on the HEXO. If you are experiencing issues,
you will need to debug your VHDL and/or go back and check each step in the Quartus design flow. If your VHDL seems
correct, a good place to check for errors is in pin planner. Sometimes the pin locations will get dropped if you are still
in edit mode when you close the pin planner window. Take a short video (<5 s) showing the proper operation of your
design. This video satisfies the requirements for deliverable #1.
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8.1.5.2 Save a Copy of your top.vhd for your Records

You now want to locate for your records the top.vhd file for the third deliverable for this exercise. This file is located
in your main working directory (Desktop\Logic_Lab\ Lab_08pl1_7segment_decoder_using_process\top.vhd). Go into
your working directory for this project and locate this file. This file satisfies the requirements for deliverable #2.

After you are done, close your project using the pull-down menus: File &> Close Project. Exit Quartus using the
pull-down menus: File > Exit.

Lab 8.1 After completing this lab exercise, can you:

e Use the modern digital design flow to take a VHDL model and synthesize it for
implementation on an FPGA?

e Use a VHDL process and a conditional programming construct to model a
combinational logic circuit?

e Use the std_logic_vector data type in a VHDL model?
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Lab 8.2. Design Re-Use and Binary Characters on the 7-Segment Displays

8.2.1 Objective

The objective of this lab is to gain experience creating and using lower-level subsystems. This will be accomplished
by creating a 7-segment decoder component and instantiating it numerous times within the top level entity. This lab
will also give experience using signal concatenation within a port map, creating a new Quartus project from a prior
project, and importing signal assignments from an external file.

8.2.2 Learning Outcomes
After completing this lab you should be able to:

e Create a new Quartus project by copying an existing project.

e Create a 7-segment decoder component and instantiate it multiple times in a higher-level system.
e Use the DEO-CV User’s Guide to find pin assignments for the Cyclone V FPGA.

e Import signal assignments into Quartus from an external CSV file.

e Use signal concatenations within the port map of a lower level component.

8.2.3 Parts Needed

e DEO-CV FPGA board.

8.2.4 Deliverables
The deliverable(s) for this lab are as follows:

1. Demonstrate a design that uses multiple instantiations of a 7-segment decoder component to drive all
the HEX character displays on the DEO-CV FPGA board (50% of exercise).

2. Demonstrate a design that displays the binary values of the four slider switches on the character
displays (40% of exercise)

3. Provide your top.vhd design file (10% of exercise).

8.25 Lab Work & Demonstration
8.2.5.1 Creating a 7-Segment Decoder Subsystem to Drive all the Character Displays

In the lab 8.1 you created a 7-segment decoder using a process. In this lab, you are going to put your decoder
logic into its own subsystem so that it can be instantiated numerous time by the top level design. You will call your
subsystem “char_decoder.vhd”. You are going to drive all six of the character displays on the DEO-CV board (HEX5,
HEX4, HEX3, HEX2, HEX1, and HEXO0) with their own decoder. The input to all decoders will be a 4-bit code coming
from the slider switches (SW3, SW2, SW1, and SW0). You will also drive the LEDs on the DEO-CV board (LEDRS3,
LEDR2, LEDR1, and LEDRO) with the values coming from the slider switches. As you change the binary values of the
slider switches, the corresponding HEX character will show on all six character displays. Figure 8.17 shows the block
diagram for this design.
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Figure 8.17

Block Diagram of the System to Drive Each Character Display with its own Decoder Component

Figure 8.18 shows a picture of the I/O on the DEO-CV board that will be used in this part of the exercise.
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Figure 8.18
Picture of the System to Drive Each Character Display with its own Decoder Component on the DEO-CV Board

Create a Quartus project by Copying a Prior Lab (8.1)

In lab 8.1 you created a project in which you spent a significant amount of time entering project settings, creating
the top.vhd file, and assigning pins. Quartus allows you to create a new project by copying a prior project so that you
don't lose past effort. Launch Quartus and then open lab 8.1 using the pull down menus: File = Open Project. Browse
to your Logic_Lab folder and select “Lab_08p1l_7segment_decoder_using_process.qpf”.

Once the project is open, copy it to a new project using the pull down menus: Project > Copy Project. In the dialog
that comes up, you can specify the location and name of the new project. Note that Quartus will make the new project
folder so you don't have to do this manually. Browse to the folder where you are working on these labs (i.e., Logic_Lab)
and append the name of the new folder to its path: give the name: “Lab_8p2_design_resuse_and_binary_chars_part1”.
Give the name of the project the same name. Your settings should look like . Make sure the “Open new project” box
is checked. Once your settings look like Figure 8.19, click “OK”.

{3k Copy Project X

Destination directory: |C:\Users\k91h784\Desktop\Logic_Lab\Lab_8p2_design_resuse_and_binary_chars_part1 ‘

New project name: Lab_8p2_design_resuse_and_binary_chars_part1 ‘

Cancel Help

Open new project. (This option closes the current project.)

Figure 8.19
Copy Project Settings in Quartus
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Create the 7-segment decoder subsystem (char_decoder.vhd).

You need to add a new file to your project called “char_decoder.vhd” that will contain the logic to drive the HEX
character displays. This logic was created in last week’s lab so you'll just need to create a new file, copy in the
functionality, rename signals, redeclare the ports. Note that when you copied over the project from 8.1, this functionality
resides within the existing top.vhd file. We will take it out of top.vhd and put it into a file called char_decoder.vhd.

In Quartus, create a new VHDL file using the pull down menus: File > New. Select “VHDL File” in the dialog that
appears. A blank file will come up in Quartus. Save the file with the desired name using the pull down menus: File >
Save As and name it “char_decoder.vhd”. Note that since the top.vhd already exists, the new char_decoder.vhd file
will be inserted below top in the hierarchy, which is what we want.

The first step is designing the subsystem is including the necessary libraries. We will be using the std_logic and
std_logic_vector data types from the std_logic_1164 library. To include this library, add the following VHDL statements
to the beginning of your char_decoder.vhd file.

library I1EEE;
use IEEE._STD_LOGIC_1164_ALL;

We are now ready to enter the VHDL entity for the design. The decoder subsystem will have the following ports:

e BIN_IN (3 downto 0) This is the 4-bit binary input vector to the decoder.
e HEX_OUT (6 downto 0) This is the 7-bit output vector to drive a character display.

Enter the following VHDL entity into your char_decoder.vhd.

entity char_decoder is
port (BIN_IN : in std_logic_vector (3 downto 0);
HEX_OUT : out std_logic_vector (6 downto 0));
end entity;

Now create the architecture for the decoder. You will copy your process from the current top.vhd file. You'll need
to rename the architecture and all signals to reflect the new entity declaration (i.e., SW will be replaced with BIN_IN,
LEDR will be replaced with HEX_OUT). Save your char_decoder.vhd file.

Modify your top.vhd File to Drive all six HEX displays

You are now ready to modify your top.vhd to reflect the design for this exercise. You will still use the SW input to
your system. You will still drive the SW inputs to the lower 4-bits of the red LEDs on the DEO-CV board (LEDR).
However, you will be now be driving all six of the character displays on the DEO-CV board. These should be called
HEXO0, HEX1, HEX2, HEX3, HEX4, and HEX5 and all have a data type of std_logic_vector(6 downto 0). Your entity
should look like:

entity top is
port (SW : in std_logic_vector(3 downto 0);

LEDR : out std_logic_vector (3 downto 0);
HEXO : out std_logic_vector (6 downto 0);
HEX1 : out std_logic_vector (6 downto 0);
HEX2 : out std_logic_vector (6 downto 0);
HEX3 : out std_logic_vector (6 downto 0);
HEX4 : out std_logic_vector (6 downto 0);
HEX5 : out std_logic_vector (6 downto 0));

end entity;

You are now ready to alter the architecture. In the existing architecture that was copied over, you can leave the
signal assignment of LEDR <= SW; but you should delete the decoder process. You will implement six decoders by
instantiating six versions of the char_decoder.vhd component. To use the decoder it must first be declared before the
begin statement. The syntax for the component declaration will look like:

component char_decoder
port (BIN_IN : in std_logic_vector (3 downto 0);
HEX_OUT : out std_logic_vector (6 downto 0));
end component;
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Once declared, you can instantiate the subsystem after the begin statement. You will need to instantiate it six
times, once for each of the displays on the DEO-CV board. Remember that each of the subsystems will have an input
of SW. The syntax for instantiating the subsystem is:

CO : char_decoder port map (BIN_IN => SW, HEX OUT => HEXO0);
Cl : char_decoder port map (BIN_IN => SW, HEX OUT => HEX1);
C2 : char_decoder port map (BIN_IN => SW, HEX_OUT => HEX2);
C3 : char_decoder port map (BIN_IN => SW, HEX_OUT => HEX3);

C4 : char_decoder port map (BIN_IN => SW, HEX OUT => HEX4);
C5 : char_decoder port map (BIN_IN => SW, HEX OUT => HEX5);

Save your top.vhd file.

Compile your Design

Compile your project by double clicking on “Compile Design” in the task pane. Fix any syntax errors you have and
re-compile until successful.

Import the Pin Assignments Using an External file

After a successful compile, Quartus will read in the new ports being used in the design. You will need to assign
the pins for the five new HEX displays (35 new signals!). As digital systems get larger and larger, it becomes too time
consuming to use the graphical Pin Planner tool within Quartus. Instead, designers typically use an external CSV file
to import the assignments into Quartus. You are going to create one of these files manually and then import it into
Quartus.

A CSV file is a text file with comma delimited data (CSV = comma separated values). For this lab, it is easiest to
use a simple text editor to create the file. MS Excel is often used to create CSV files; however, sometimes the CSV file
created in Excel contains special characters that prevent it from being imported successfully. As aresult, it is suggested
that you use a simple text editor. Start a text editor (e.g., notepad, notepad++,...). You are going to type in the signal
name, port direction, and pin assignment comma delimited. Start by typing the following into your text file:

# This is the pinout assignments for the DEO-CV Board (# means comment)
To,Direction,Location

HEXO[6] ,Output,PIN_AA22

HEXO[5],Output,PIN_Y21

HEXO[4] ,Output,PIN_Y22

HEXO[3],Output,PIN_W21

HEXO[2] ,Output,PIN_W22

HEXO[1],Output,PIN_V21

HEXO[0] ,Output,PIN_U21

Notice that the above text defines the pin assignments for the HEXO port, which you have already manually entered
in the pin planner tool. When this file is imported, it will overwrite the values in pin planner. Save the CSV file in your
project directory and name it “pin_assignments.csv”. Use the DEO-CV user’s manual to look up the pin numbers for all
of the ports used in this design. You will need to add the assignments for the existing I/O SW and LEDR in addition to
the new I/0 HEX1, HEX2, HEX3, HEX4, and HEX5.

Once the CSV file is created, it can be imported into Quartus. In Quartus, use the pull down menus to import the
pin assignments using: Assignments > Import Assignments. Browse to your CSV file and click “OK”. This should
have imported in all of the assignments for your design. To verify that everything was imported correctly, run the Pin
Planner tool and scroll through the assignments. If you made any syntax errors in your CSV file, the assignments in
Pin Planner will be blank. If you entered the wrong pin, you won't be able to find the mistake until you download your
design. Re-Compile your design.

Download and Test Your Design

Open the programmer tool and download your design to the FPGA. You should now see the values of the slider
switches being displayed on the red LEDS and all of the HEX displays showing the same corresponding character.
Verify that your design works for each of the 16 possible input codes. Fix any errors you discover. Take a short video
(<5 s) showing the proper operation of your design. This video satisfies the requirements for deliverable #1.
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8.2.5.2 Display Binary Characters on the 7-Segment Displays

Now you are going to design a system that will display the characters on the HEX displays corresponding to the
binary values on the slider switches. You will only use four of the character displays for this part (HEX3, HEX2, HEX1,
and HEXO0). The character displays will only show the symbol 0 or 1 based on the value on the corresponding slider
switch. For example, if you set the slider switches to “1010", the displays should show the symbols 1 0 1 0. Figure
8.20 shows how the system will work.

DEO-CV _CretonsFy =

Figure 8.20
Picture of System to Drive Binary Characters to the 7-Segment Displays

Create a New Quartus Project by Copying Part 1

Create a new project for this design by copying the project from part 1. Use the Quartus “Copy Project” operation
and name the new folder and project “Lab_8p2_design_resuse_and_binary_chars_part2”.

NOTE: The Quartus copy project command will only copy project files. The “pin_assignments.csv” file
you put in the project folder for part 1 will not be automatically copied over. It is a good practice to manually
copy this into your new project folder so that you have the most up to date assignment file.

Design the Binary Character Display Logic

You are now ready to implement the functionality for part 2 of this exercise. In the top.vhd, delete the HEX5 and
HEX4 ports from the top entity. Next, delete the component instantiations that that drove the HEX5 and HEX4 ports in
the architecture.

At this point you need to figure out a way to drive only 0 and 1 characters to the displays based on the
corresponding slider switch. Consider the case of SWO driving HEXO. Notice that the input into your char_decoder.vhd
is a 4-bit vector. What if you could drive in 0’s for bits (3 downto 1) of this 4-bit vector and then connect SWO to bit 0?
This would have the effect that when SWO0 was a 0, the 4-bit input vector to the char_decoder would be “0000” and
HEXO would display the symbol 0. If SWO was a 1, the 4-bit input vector to the char_decoder would be “0001” and
HEXO would display the symbol 1. All that you need to do to accomplish this is to concatenate three leading zeros with
the switch input.

There are multiple ways to concatenate signals in VHDL. You could create a new 4-bit signal and then use a
signal assignment and the concatenation operator (&). A faster way to accomplish this when driving component inputs
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is to put the concatenation directly in the port mapping. VHDL supports this type of concatenation using the following
syntax:

CO : char_decoder port map (BIN_IN => "000" & SW(0), HEX_OUT => HEXO);

Modify your architecture to implement this behavior for each of the four char_decoder.vhd subsystems. Save your
design.

Compile your Design

Compile your project by double clicking on “Compile Design” in the task pane. Fix any syntax errors you have and
re-compile until successful.

Download and Test Your Design

Open the programmer tool and download your design to the FPGA. You should now see the binary value of SW
(3 downto 0) being displayed on HEX3, HEX2, HEX1, and HEXO. Verify that your design works for each of the 16
possible input codes. Fix any errors you discover. Take a short video (<5 s) showing the proper operation of your
design. This video satisfies the requirements for deliverable #2.

8.2.5.3 Save a Copy of your top.vhd for your Records
Locate the top.vhd file for part 2 of this exercise. This file satisfies the requirements for deliverable #3.

After you are done, close your project using the pull-down menus: File & Close Project. Exit Quartus using the
pull-down menus: File > Exit.

Lab 8.2 After completing this lab exercise, can you:

e Create a new Quartus project by copying an existing project?

e Create a 7-segment decoder component and instantiate it multiple times in a higher-
level system?

e Use the DEO-CV User's Guide to find pin assignments for the Cyclone V FPGA?

e Import signal assignments into Quartus from an external CSV file?

e Use signal concatenations within the port map of a lower level component?
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Chapter 9: Behavioral Modeling of
Sequential Logic

Lab 9.1. Ripple Counter and the Character Displays

9.1.1 Objective

The objective of this lab is to gain experience designing and using sequential storage devices in VHDL. You will
create a D-flip-flop model using a process and then instantiate it multiple times to build a 38-bit ripple counter. The
most significant bits of the counter (i.e., the slowest toggling bits) will be used to drive the LEDs and HEX character
displays on the DEO-CV FPGA board. This lab will also give experience using a logic analyzer to measure the frequency
of a counter.

9.1.2 Learning Outcomes
After completing this lab you should be able to:

e Create a model of a D-flip-flop storage device using a process in VHDL.

e Create a 38-bit ripple counter out of the D-flip-flop subsystem.

e Use portions of the counter to drive 1/0 on the DEO-CV board (LEDR, HEX displays, and GPIO_1).
e Measure the frequency of the counter using a logic analyzer.

9.1.3 Parts Needed

e DEO-CV FPGA board.
e Analog Discovery 2.

9.1.4 Deliverables
The deliverable(s) for this lab are as follows:

1. Demonstrate a 38-bit ripple counter made of D-flip-flops where the most significant bits drive the HEX
displays and LEDs on the DEO-CV FPGA board (70% of exercise).

2. Measure the frequency of the counter using a logic analyzer (20% of exercise).

3. Provide your top.vhd design file (10% of exercise).

9.1.5 Lab Work & Demonstration

You are going to build a 38-bit ripple counter out of D-flip-flops. You will first create a model of a rising edge
triggered D-flip-flop in VHDL (dflipflop.vhd) and then use it in your top.vhd to create the counter. The counter will be
clocked from the 50 MHz oscillator on the DEO-CV board. The reset for the counter will come from the active LOW
Reset push button on the DEO-CV board. The counter needs to be 38-bits wide in order to provide signals that toggle
slow enough to be seen with the human eye when observed on the DEO-CV LEDs. The upper 24-bits of the counter
will be used to drive the 6x HEX character displays on the DEO-CV board through your char_decoder.vhd components.
The upper 10-bits of the counter will be used to drive the 10x red LEDs on the DEO-CV board. The lower 8-bits of the
counter will drive the GPIO_1 header on the DEO-CV board to enable a logic analyzer measurement of the counter.
Note that you will need to add the GPIO_1 port to your entity and find the pin assignments for this 1/0O from the DEO-
CV User's Guide. Figure 9.1 shows a block diagram of the ripple counter system.
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Block Diagram of the Ripple Counter System

Figure 9.2 shows the I/O that will be used in this exercise.
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Figure 9.2
Picture of the Ripple Counter System on the DEO-CV Board
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9.1.5.1 Implement the Ripple Counter System in VHDL on the DEO-CV Board
Create a New Quartus Project by Copying Lab 8.2

We want to re-use many of the 1/0O that were used in lab 8.2 so we’ll create a new Quartus project for this exercise
by copying lab 8.2. Open lab 8.2 in Quartus. Use the Copy Project feature to create the project for this lab. Name the
folder and project “Lab_09p1_ripple_counter”.

Note that when you copy the project, the pin_assignments.csv file will not automatically copy over. You
should manually copy this file into your new project directory.

Modify your top.vhd file Entity to Support the Additional I/0O that will be Used in this Exercise

In this lab you will be using additional ports beyond the entity definition from lab 8.2. These signals include Clock
and Reset to drive the synchronous circuitry in the design in addition to widening the LEDR vector to 10-bits to drive all
of the red LEDs on the DEO-CV board. You will also be adding the lower 8-bits of the GPIO_1 header. All ports should
be declared as types std_logic or std_logic_vector. Make the entity modifications to your top.vhd file. Once complete,
your entity definition should look like Figure 9.3.

@Text Editor - C:/Users/k91h784/Desktop/Logic_Lab/Lab_09p1_ri.. — (] X
File Edit View Project Processing Tools Window Help m‘e
E8i EEMNRR 0N B=

iI%: [1brary IEEE; PS

% use IEEE.STD_LOGIC_1164.ALL;

4 =entity top is

5= port (Clock : in std_logic;

6 Reset : in std_logic;

7 Sw : in std_logic_vector (3 downto [0};

8 LEDR ¢ out std_logic_vector (9 downto 0);

9 HEXO : out std_logic_vector (6 downto 0);

10 HEX1 : out std_logic_vector (6 downto 0);

il HEX?2 : out std_logic_vector (6 downto 0);

a2 HEX3 : out std_logic_vector (6 downto 0);

13 HEX4 : out std_logic_vector (6 downto 0);

14 HEX5 : out std_logic_vector (6 downto 0);

15 GPIO_1 : out std_logic_vector (7 downto 0));

16 |end entity;

iz >
< >

100%  00:01:20

Figure 9.3
Entity Definition for the 38-Bit Ripple Counter System

Create a Model for a Rising Edge Triggered D-flip-flop

Now you are going to create a model for a D-flip-flop. This model will be contained in a file named “dflipflop.vhd”.
The model should be rising edge sensitive and have an active low reset. The data input will be called D and the outputs
will be called Q and Qn. In Quartus, create a new VHDL file using the pull down menus: File > New. Select “VHDL
File” in the dialog that appears. A blank file will come up in Quartus. Save the file with the desired name using the pull
down menus: File > Save As and name it “dflipflop.vhd”. Note that since the top.vhd already exists, the new
dflipflop.vhd file will be inserted below top in the hierarchy, which is what we want.

Enter the VHDL for a rising edge triggered D-flip-flop with active LOW reset. Your model should use the std_logic
data types from the std_logic_1164 library. You should use a single process to implement your D-flip-flop. Once
complete, save your file.
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Create the 38-bit Ripple Counter by Instantiating D-Flip-Flop Components

Recall that a ripple counter is created by wiring D-flip-flops in a toggle-flop configuration and then using the Qn
output to drive the next stage of the counter. Figure 9.4 shows the architecture of a ripple counter for reference.

CNT(0) CNT(1) CNT(37)
I— D Q I— D Q D Q
————)

Clock ——— Qn Qn e | Qn

(50MHz) > > >
uo u37

Reset (I) (I) ot " _(l)

Figure 9.4

Ripple Counter Architecture

The clock for the ripple counter will come from the 50 MHz oscillator on the DEO-CV board. This will result in the
LSB of the counter running at 25 MHz. This is much too fast to observe on an LED. In order to be able to observe
some of the bits of the counter on LEDs, we need to observe bits that are toggling in the Hz range. Since each
subsequent bit in the counter will run at %2 the frequency of the preceding bit, we can continue to add bits to the counter
until the most significant bits are slow enough to be observed. This will require 38 bits in the counter. To create a 38-
bit counter, you will need to instantiate your D-flip-flop 38 times and wire them in the ripple counter configuration shown
in Figure 9.4. You will need to create internal signals to connect to the D, Q, and Qn ports of the D-flip-flops. Create
two, 38-bit signal vectors called CNT and CNTn.

Connect the Ripple Counter Outputs to LEDR, HEX, and GPIO 1 Outputs

Connect the most significant 24-bits of the counter to your 6x instantiations of your char_decoder.vhd component
to drive the 6x HEX displays. You'll connect the bits in groups of four. For example, CNT(37 downto 34) will drive
HEX5, CNT(33 downto 30) will drive HEX4, etc. Connect the most significant 10-bits of your counter directly to the 10x
red LEDs on the DEO-CV board. Connect the least significant 8-bits of your counter to the GPIO_1 port.

Compile your Design

Compile your design and fix any errors that you encounter.

Assign the Pins for the Additional I/O used in this Exercise

Locate the pin assignments for the Clock, Reset, additional LEDR I/O, and GPIO_1 pins used in this lab using the
DEO-CV User's Guide. Add these locations to your pin_assignments.csv document and then import into Quartus.
Verify that the pin assignments are correct by launching the Pin Planner tool. Once they are verified, close the Pin
Planner tool and recompile.

Download and Test Your Design

Open the programmer tool and download your design to the FPGA. You should now see a counter pattern on the
LEDRs and HEX displays. Verify that your design works as expected including the reset functionality. Fix any errors
you discover. Take a short video (<5 s) showing the proper operation of your design on the LEDs and HEX displays.
This video satisfies the requirements for deliverable #1.
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9.1.5.2 Take a Logic Analyzer Measurement of your Counter

Now you are going to take a logic analyzer measurement of the lower 8-bits of your counter, which are being driven
to the pins on the GPIO_1 header. A logic analyzer is an instrument that measures the digital values on a set of signals
(aka, a “bus”). Since only 1's and O’s are stored, the circuitry to implement a logic analyzer is much simpler than an
oscilloscope. This allows the logic analyzer to have more channels. Logic analyzers can have hundreds of channels,
which is useful for debugging digital systems because many vectors can be observed in real-time. The busses can be
displayed in different radices and in both waveform and listing format. The Analog Discovery has 16 logic analyzer
channels. We will use the logic analyzer to measure the lower 8-bits of the ripple counter and determine its frequency.

Connect the Analog Discovery’s Logic Channels to the GPIO 1 port on the DEO-CV

The logic analyzer channels on the Analog Discovery are labeled as numbers (i.e., 0, 1, 2...). You should connect
the lower 8 channels of the logic analyzer to the GPIO_1 header pins labeled DO - D7 in the DEO-CV user’'s manual.
The block diagram in Figure 9.1 shows how the channels between the GPIO_1 header are mapped to the logic analyzer.
Also connect one of the grounds of the Analog Discovery to a ground pin on the GPIO_1 header. The grounds of the
Analog Discovery are labelled with the | symbol. After the connection to the DEO-CV board is complete, plug in the
Analog Discovery to your computer using the USB cable. Your connection should will look like Figure 9.2.

Launch Waveforms

The Analog Discovery is controlled using an application called Waveforms. If Waveforms isn't installed on the
computer you are using, you can download it for free from Digilent.com (http://store.digilentinc.com/). Once on this
website, on the left select “Scopes, Instruments, & Circuits”, and then on the “Waveforms 2015 (Download Only)”
product. On the next screen, select “Download Here”. On the next screen you will find “Latest Downloads” where you
can choose “Windows”. The 65MB download will then commence. Once downloaded, run the *.exe file and the

software will be installed.

Launch Waveforms (Start —Digilent — Waveforms). The software will automatically recognize the Analog Discovery
and connect. The Waveforms startup window shown in Figure 9.5 will appear. From this window, you can launch all
of the tools associated with the Analog Discovery. Each tool brings up a new tab within the workspace window. Multiple
tools can be launched and ran at the same time.

B WaveForms (new workspace)
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- " u DEVICES

Discovery2 SN:210321A36DC9  Status: OK &

Trigger PC

Figure 9.5
Waveforms 2015 Startup Window

Configure the Logic Analyzer Tool

Start the logic analyzer by clicking on the “Logic” button on the left side of the welcome screen. The logic analyzer
tool will appear. The first thing to do is define the signals that we are measuring. On the left of the screen there is a
section that shows all of the signals in the measurement. Select the “Click to Add channels” button and then choose
“Bus”. A bus is the term used to describe a group of signals. In this lab exercise, we will be measuring an 8-bit bus on
the GPIO_1 header that is driven by the lower 8-bits of CNT on the FPGA.


http://store.digilentinc.com/
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In the options window that appears, hame the bus CNT. On the left side of the window there is a list of available
logic analyzer channels to include in the bus. Highlight the eight channels “DIO 7” through “DIO 0" by selecting them
while holding down the Shift key. Once selected, click on the + sign to add them to the box on the right. Your settings
should look like Figure 9.6. Once the bus looks correct, click the “Add” button.

M Add Bus1 X
Name: CNT

DIC 15 Do 7

DIO 14 DIO 6

DIO 13 + DO 5

DIC 12 ¢+ |[DIO 4

DIO 11 DIO 3

DIC 10 DIO 2

DIO 9 DIO 1

DIC 8 DIO 0

Enable: None + low

Clock: Nane < Rising

Format: Decimal

Endianness: MSB

MSB 7 -

LSB 0 2

Add Cancel

Figure 9.6

Logic Analyzer Bus Setup

Run the Logic Analyzer Tool

While there are a variety of settings that will need to be configured, go ahead and click on the “Single” button to
take a measurement. After the measurement, you will see a decimal value for CNT and also some edges on the signals
(7:0). You may need to adjust the zoom to see the signals correctly.

Adjust the zoom by selecting different values in the Base setting drop-down in the upper right corner of the screen.
Each time you zoom in or out, you'll need to click the “Single” button to re-run the analyzer and fill the screen. At 50
MHz, a setting of 0.05 us/div is a good zoom factor. Your measurement should look like Figure 9.7.
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Figure 9.7
Logic Analyzer of Ripple Counter with No Trigger
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Setup the Trigger

A “trigger” is a pattern that the logic analyzer will search for and then place in the center of the measurement. We
want to setup a trigger to look for CNT=x"00". Highlight all of the bits within CNT. Click the trigger button (it is the “T”
right below the run button). Select “0 LOW". Now when you click the “Single” button, you'll notice that the center of
the waveform screen is the transition between 255 to 0. Your measurement will now look like Figure 9.8.
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Figure 9.8

Logic Analyzer Measurement of CNT with Trigger set to x"00"

Click “Run” and allow the analyzer to free run. When using the “Run” button (instead of the “Single” button), the
analyzer will continually take measurements and replace the data on the screen. Since we have the trigger set to
CNT=x"00", each measurement will mostly look the same and the screen should appear somewhat static. To prove to
yourself that the data is actually live, unplug the DO channel from the DEO-CV board and observe that the signal goes
flat in the analyzer.

Measure the Frequency of the Counter

You can take a variety of measurements using the “HotTrack” feature within the waveform window. This button is
the ruler icon in the upper right corner of the waveform pane. Click on the “HotTrack” button to turn it on. Now as you
move your cursor around on the waveform, you’ll see measurements pop up. Place your cursor over the bus and
measure the pulse width. You should see a measurement that gives the pulse width of the counter. You can take the
inverse of this period to find the rate that your counter is incrementing. Since the incoming clock is 50 MHz, CNT(0)
will have a frequency of 25 MHz. However, since both the HIGH and LOW values of CNT(0) are considered when
interpreting the bus as a number, the counter is actually producing numbers at a rate of 50 M bits per second (bps).
This corresponds to a pulse width of 0.02 us.

Take a screenshot of the logic analyzer measurement displaying the HotTrack pulse width value. Save the image
in JPG format with a descriptive file name. This image satisfies the requirements for deliverable #2.

Save your Waveforms Workspace

You can save your Analog Discovery measurement setup. This is useful for larger logic analyzer measurements
in which there are numerous steps required to setup the busses and triggers. Click “Workspace — Save”. Give a
descriptive name and save within your Quartus project directory. Close Waveforms.
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9.1.5.3 Save a Copy of your top.vhd for your Records
Locate the top.vhd file for this exercise. This file satisfies the requirements for deliverable #3.

After you are done, close your project using the pull-down menus: File & Close Project. Exit Quartus using the
pull-down menus: File > Exit.

Lab 9.1 After completing this lab exercise, can you:

e Create a model of a D-flip-flop storage device using a process in VHDL?

e Create a 38-bit ripple counter out of the D-flip-flop subsystem?

e Use portions of the counter to drive I/O on the DEO-CV board (LEDR, HEX displays,
and GPIO_1)?

e Measure the frequency of the counter using a logic analyzer?
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Lab 9.2: A “Walking 1” Finite State Machine

9.2.1 Objective

The objective of this lab is to gain experience designing finite state machines (FSMs) in VHDL using a behavioral
modeling approach. You are going to design a FSM that will produce a walking 1 pattern on the red LEDs of the DEO-
CV board. You will also drive the walking 1 pattern to the pins of the GPIO_1 connector for observation with a logic
analyzer measurement. You will also gain experience using a divided down clock to trigger your FSM.

9.2.2 Learning Outcomes
After completing this lab you should be able to:

e Create a FSM using a three process, behavioral modeling approach.
e Use adivided down clock in order to drive the FSM at a slower rate.
e Take logic analyzer measurement of a walking 1 pattern.

9.2.3 Parts Needed

e DEO-CV FPGA board.
e Analog Discovery 2.

9.2.4 Deliverables
The deliverable(s) for this lab are as follows:

1. Demonstrate a walking 1 pattern on the red LEDs of the DEO-CV board (70% of exercise).
2. Alogic analyzer measurement of the walking 1 pattern (20% of exercise).
3. Provide your top.vhd design file (10% of exercise).

9.25 Lab Work & Demonstration

A walking 1 pattern is one that asserts one, and only one, signal at any given time within a group of signals. When
this is displayed on LEDs, it appears that the asserted LED walks across the display. This type of pattern can be
created using a finite state machine in which each state represents one of the output patterns. The Moore type outputs
simply assert the desired signal when in each corresponding state of the machine. An input can be used to set the
direction of the walking 1 pattern.

In this lab exercise you are going to create a FSM that will produce a walking 1 pattern within a 10-bit vector. The
10-bit output vector will drive the 10x red LEDs and lower 10x pins on the GPIO_1 header. This FSM will require 10x
states and use Moore-type outputs. The direction of the walking 1 pattern will be dictated by SW(0). When SW(0)=1,
the pattern will walk from LEDR(0) to LEDR(9) and repeat. When SW(0)=0, the pattern will walk from LEDR(9) to
LEDR(0) and repeat. Figure 9.5 shows a graphical depiction of the walking 1 patterns as seen on the red LEDs.
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Walking 1 Patterns on the Red LEDs

The FSM will need to be clocked using a frequency that is slow enough so that the walking 1 pattern can be seen
with the human eye on the red LEDs. One of the ways to create a slower clock signal is to continually divide the
incoming 50 MHz clock by two using a series of toggle flops. You have already implemented this type of clock divider
in lab 9.1 in the form of a 38-bit ripple counter. In this lab you will use bit 21 of your 38-bit ripple counter to clock your
FSM. This bit has a frequency of 11.9 Hz.

After observing the walking 1 pattern on the red LEDs, you will take a logic analyzer measurement on the 10-bit
vector on the GPIO_1 header. Figure 9.10 shows the block diagram for the walking 1 FSM system.

DEO-CV Board
Cyclone V FPGA (topvhd)  r-=——==—-- 1
(SCEBA4F23CT) I Walking 1 FSM 1
1 (3 process) :
]
SW(O 1
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1 1
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r . [] ] 0odic Analyzer
:38-B|t Rlp_ple Co_un_ter' - i 1 iy | e @ = i
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50MHz SN ! P Vo Ley soely 2 E
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Reset 7 ' GPIo_1(8) | 3] @ o) 8
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: .
Figure 9.10

Block Diagram of the Walking 1 FSM System

Figure 9.11 shows the I/O that will be used in this lab.
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Figure 9.11
Picture of the Walking 1 System on the DEO-CV Board

9.2.5.1 Implement the Walking 1 FSM
Create a New Quartus Project by Copying Lab 9.1

We are going to use many of the same 1/O that were used in lab 9.1 so we’ll create a new Quartus project for this
exercise by copying lab 9.1. Open lab 9.1 in Quartus. Use the Copy Project feature to create the project for this lab.
Name the folder and project “Lab_09p2_walkingl_fsm”. Once again, keep in mind that when you copy the project, the
pin_assignments.csv file will not automatically copy over. Manually copy this file into your new project directory. Don’t
delete your ripple counter VHDL from lab 9.1. You will be using it in this lab to produce the divided down clock.

Modify your top.vhd file Entity to Support the Additional I/0O that will be Used in this Exercise

In this lab you will have a slightly different entity definition from lab 9.1. First, we want to change the name of the
incoming 50 MHz clock signal to differentiate it from the internal divided down clock we will use to clock our FSM. Call
the incoming clock port Clock_50. You also need to expand the GPIO_1 output port to 10-bits so that the entire walking
1 pattern can be measured by the logic analyzer. Once complete, your entity definition should look like Figure 9.12.

& Text Editor - C/Users/ka1h784/Desktop/Logic_Lab/Lab_09p2_walki..  — m} X
File Edit View Project Processing Tools Window Help Search altera.com ®
= e E MRS 0D Y RS
% |1brary IEEE; ~
2 use TEEE.STD_LOGIC_1164.ALL;
8
4 eentity top is
5 = port (Clock 50 : in std_logic;
6 Reset : in std_logic;
7 sw : in std_logic_vector (3 downto 0);
8 LEDR i out std_logic_vector (9 downtoc 0);
9 HEX0 ¢ out std_logic_vector (6 downto 0);
10 HEX1 : out std_logic_vector (6 downto 0);
11 HEX2 : out std_logic_vector (6 downto 0);
12 HEX3 : out std_logic_vector (6 downto 0);
13 HEX4 : out std_logic_vector (6 downto 0);
14 HEX5 : out std_logic_vector (6 downto 0);
15 GPIO_1 : out std_logic_vector (9 downto 0));
16 |end entity;
717 ~
< >
100% 00:01:04
Figure 9.12

Entity Definition for the Ripple Counter System
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Assign the Pins for the Additional 1/0 used in this Exercise

You will now need to update your pin_assignments.csv file to reflect the changes and additions for this lab. Open
your pin_assignment.csv file. First, you will need to change the name of the incoming clock from “Clock” to “Clock_50".
Next, you will need to add the pin assignments for the additional pins that you are using on the GPIO_1 header. The
pin locations can be found in the DEO-CV User’s Guide. Import the assignments into Quartus and verify they are correct
by looking in the Pin Planner tool.

Note that when you change the name of a signal, it will leave the old assignment in Pin Planner. You should
manually delete the signal Clock from the pin assignment table. Otherwise there will be a conflict with both Clock and
Clock_50 being assigned to PIN_M9. In Pin Planner, right-click on the Clock signal, select Edit, and then Delete. Once
the assignments are verified, close the Pin Planner tool.

Create the Internal Divided Down Clock

You are going to clock your FSM at a rate that is slow enough that the walking 1 pattern can be observed on the
red LEDs on the DEO-CV board. You will select one of the output bits of your ripple counter to be the internal clock.
First, declare a new signal called Clock_div of type std_logic. Then assign bit 21 of your ripple counter to it. This bit
will give a clock frequency of ~11.9 Hz, which is slow enough to make the walking 1 pattern visible to the human eye,
but fast enough that a logic analyzer measurement won'’t need to wait for too long to fill up its measurement buffer.

Design the FSM using a Three Process Behavioral Modeling Approach

Design your walking 1 FSM using a three process, behavioral modeling approach. Clock your FSM the internal
Clock_div signal. Use the Reset input port as the active LOW reset for your FSM. Use the SW(0) input as the “direction”
input for your FSM. When SW(0) is a logic 1, your pattern should move from LEDR(0) to LEDR(9) and move in the
opposite direction when SW(0) is a logic 0. Note that the entity you copied from lab 9.1 brings in SW as a 4-bit vector.
It is OK to leave this as is even though you are not using SW(3 downto 1). The synthesizer will automatically remove
the unused pins from the design. You FSM will have 10x states and traverse through them in a linear pattern with the
direction dictated by SW(0). Create a new 10-bit signal called Walkingl_Out to hold the output of your FSM. Design
your output logic to be of Moore-type (i.e., only depending on the current state). In each state, assert one and only bit
of the 10-bit vector Walkingl_Out. Design the outputs so that your Walkingl_Out vector can be directly assigned to
LEDR and produce the desired pattern on the LEDS.

Assign the Output of your FSM to the LEDR and GPIO 1 Ports

After your FSM is designed, you should make signal assignments from the output Walkingl_Out to both LEDR
and GPIO_1. Since all of these vectors are 10-bits, the assignments can be made directly.

Compile your Design

Compile your design and fix any errors that you encounter.

Download and Test Your Design

Open the programmer tool and download your design to the FPGA. You should now see a walking 1 pattern on
the red LEDs. Verify that your design works as expected including the direction and reset functionality. Fix any errors
you discover. Take a short video (<5 s) showing the proper operation of your design on the red LEDs. This video
satisfies the requirements for deliverable #1.

9.2.5.2 Take a Logic Analyzer Measurement of your Walking 1 Pattern

Now we want to take a logic analyzer measurement of the 10-bit walking 1 pattern on the GPIO_1 pins. Connect
the logic channels 0 - 9 of the Analog Discovery to the GPIO_1 header as shown in Figure 9.10 and Figure 9.11.
Make sure to connect the ground of the Analog Discovery to the GPIO_1 header. Launch Waveforms and click on the
Logic tool. In the logic analyzer tool, create a new bus called “Walkingl_Out” and add channels DIOO - DIO9 to the
bus. Click “Add”. You are measuring a relatively slow signal so you should set the position to 0 s and the timescale to
0.2 s/div. Click on the “Single” button to run the measurement. Your measurement should look like Figure 9.13. The
measurement will take a few seconds to display because it is sampling at a very slow rate at this zoom setting. Take
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measurements of the walking 1 pattern running in both directions to verify its functionality. Use the HotTracks tool to
measure the pulse width of one of the walking 1s. It should have a pulse width of 0.084 s, which corresponds to a FSM
clock rate of 11.9 Hz.
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Logic Analyzer Measurement of Walking 1 Pattern

Take a screenshot of the logic analyzer measurement displaying the HotTrack pulse width value. Save the image
in JPG format with a descriptive file name. This image satisfies the requirements for deliverable #2.

Save your Analog Discovery workspace in your Quartus project directory so that you can recreate this
measurement in the future if needed. Close Waveforms.

9.2.5.3 Save a Copy of your top.vhd for your Records
Locate the top.vhd file for this exercise. This file satisfies the requirements for deliverable #3.

After you are done, close your project using the pull-down menus: File > Close Project. Exit Quartus using the
pull-down menus: File > Exit.

Lab 9.2 After completing this lab exercise, can you:

e Create a FSM using the three process, behavioral modeling approach?
e Use a divided down clock in order to drive the FSM at a slower rate?
e Take logic analyzer measurement of a walking 1 pattern?
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Lab 9.3. Counters using a Single Process and a 2" Clock Divider

9.3.1 Objective

The objective of this lab is to gain experience designing counters with a single process in VHDL. This lab will also
give experience building a selectable, 2" clock divider based on a ripple counter. The clock divider will allow the counter
to be run at a speed that can observed on the LEDs of the DEO-CV board. This lab will also give experience using a
logic analyzer to measure the frequency of a counter.

9.3.2 Learning Outcomes
After completing this lab you should be able to:

e Implement a counter using a single process in VHDL.
e Implement a selectable, 2" clock divider subsystem.
e Measure the frequency of the counter using a logic analyzer.

9.3.3 Parts Needed

e DEO-CV FPGA board.
e Analog Discovery 2.

9.3.4 Deliverables
The deliverable(s) for this lab are as follows:

1. Demonstrate a counter implemented with a single process and displayed on the HEX displays and red
LEDs of the DEO-CV board (70% of exercise).

2. Alogic analyzer measurement of the frequency of the counter (20% of exercise).

3. Provide your top.vhd design file (10% of exercise).

9.3.5 Lab Work & Demonstration

You are going to design a 24-bit counter using a single process win VHDL. The 24-bits will be used to drive the
six HEX character displays on the DEO-CV board through your char_decoder.vhd subsystem. The lower 10-bits of the
counter will drive the 10x red LEDs on the DEO-CV board. The lower 8-bits of the counter will drive the GPIO_1 header
on the DEO-CV board to enable a logic analyzer measurement of the counter.

You are also going to create a new subsystem that will selectively divide the frequency of the incoming 50 MHz
clock so that rate of your counter can be changed in real-time. This new system will be called “clock_div_2ton.vhd”
and will create the internal clock (Clock_div) that will be used by your 24-bit counter process. Figure 9.14 shows the
block diagram for this exercise.
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Figure 9.14
Block Diagram of the Counter System with 2" Clock Divider

Figure 9.9 shows the 1/O that will be used in this exercise.
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Figure 9.15
Picture of the Counter System with 2" Clock Divider on the DEO-CV Board
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9.3.5.1 Design the 24-Bit Counter and Selectable 2" Clock Divider
Create a New Quartus Project by Copying Lab 9.2

Open lab 9.2 in Quartus. Use the Copy Project feature to create the project for this lab. Name the folder and
project “Lab_09p3_counter_n_clockdiv_2ton”. Manually copy the pin_assignments.csv file into your new project
directory. Don’t delete your ripple counter VHDL from lab 9.2. You will be moving the VHDL for your ripple counter
into your clock_div_2ton.vhd later in this lab.

Add the numeric_std Library

In this exercise you will be creating a counter by taking advantage of the “+” operator. This operator is not
supported in the VHDL standard library for the type std_logic_vector. It is provided in the numeric_std library for type
unsigned, which can be type casted back to std_logic_vector. To gain access to this operator, add the numeric_std
package to your top.vhd file.

Modify the Entity for this Exercise

In this exercise, you will be using almost the same 1/O from lab 9.2 with the exception that the GPIO_1 port will be
reduced to 8 bits. Modify the size of the GPIO_1 port. When done, the package and entity portion of your design
should look like Figure 9.16.

@Text Editor - C:/Users/k91h784/Desktop/Logic_Lab/Lab_09p3_counter_n_clockdiv_2t.. — O X
Eile Edit View Project Processing Tools Window Help W‘B
N il ENARS 0D W EE

1 ~

2 use IEEE.STD_LOGIC_1164.ALL;

3 use IEEE.NUMERIC_STD.ALL;

4

5

6 centity top is

7 & port (Clock_50 : in std_logic;

8 Reset :in std_logic;

9 SW : in std_logic_vector (3 downto 0);

10 LEDR : out std_logic_vector (9 downto 0);

11 HEXO0 : out std_logic_vector (6 downto 0);

12 HEX1 : out std_logic_vector (6 downto 0);

13 HEX2 : out std_logic_vector (6 downto 0);

14 HEX3 : out std_logic_vector (6 downto 0);

15 HEX4 : out std_logic_vector (6 downto 0);

16 HEX5 : out std_Tlogic_vector (6 downto 0);

17 GPTO_1 : out std_Tlogic_vector (7 downto 0));

18 |end entity;

19 v
< >

Ln4 Col1 VHDL File 0%  00:00:00

Figure 9.16

Package and Entity Definition for the One-Process Counter System

Create a Selectable, 2" Clock Divider

In order to view the counter on the LEDs and character displays on the DEO-CV board with the human eye, you
will need to slow down the clock frequency. The clock divider you will design in this lab will be based on your 38-bit
ripple counter from prior labs. Your divider will choose one of the bits of the ripple counter to serve as the divided down
clock for your overall system. Since each bit of the ripple counter produces a frequency that is % of the prior bit, the
clock frequencies available are multiples of 2". As such, we typically call this a “2" Clock Divider”. You are going to
move your ripple counter into its own VHDL file called clock_div_2ton.vhd. The clock divider will take in the 50 MHz
clock from the DEO-CV oscillator on an input port and produce one of four selectable clock frequencies (25 MHz, 191
Hz, 6 Hz, and 1.5Hz). The output clock will be selected by a multiplexer process within clock_div_2ton.vhd whose
select lines come from the slider switches on the FPGA board. Figure 9.17 shows the architecture for the selectable,
2" clock divider.
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entity clock div_2ton is
port (Clock In : in std logic;
Reset : in std logic;
Sel : in std_logic: vector (1 downto 0) ;
Clock_Out : out std logic);
end entity;

Figure 9.17
Selectable, 2" Clock Divider Architecture

Designing the 2" clock divider subsystem will require creating a new VHDL file in Quartus called
clock_div_2ton.vhd. Within this new file, use the entity definition provided in Figure 9.17. You will insert your 38-bit
ripple counter from prior labs into this file and clock it using the input port “Clock_In". You will then create a 4-to-1
multiplexer process that will choose one of the output bits of the ripple counter to drive the output port “Clock_Out”.
The selection will be made based on the input “Sel”. Since Sel is a 2-bit vector, it can select one of four bits of the
counter. Choose the counter bits for the multiplexer so that they give the clock frequencies 25 MHz, 191 Hz, 6 Hz, or
1.5 Hz based on an incoming clock of 50 MHz. Note that your clock divider requires the dflipflop.vhd subsystem. If
this system isn’t in your project directory, add it. Save your design.

Back in your top.vhd file, declare your clock_div_2ton.vhd design as a component and instantiate it. Drive the
divider component with the input port Clock_50. The output of the divider will be an internal signal called “Clock_div".
The signal Clock_div will be the signal that drives the main 24-bit counter process that you will design next. Use the
input port “Reset” to drive the Reset input of your clock divider. Finally, use the SW(1) and SW(0) input ports to drive
the “Sel” inputs of the clock divider.

Create the Main 24-Bit Counter using a Single Process

In your top.vhd, create the main 24-bit counter using a single process. The counter should be clocked with the
output of the clock_div_2ton.vhd subsystem (i.e., Clock_div) and be reset using the input port “Reset”. Consider
creating two internal, 24-bit signals, one of type unsigned (CNT_uns) and the other of type std_logic_vector (CNT).
Create the counter process to update only CNT_uns. This will allow you to use the “+” operator to increment CNT_uns
on the rising edge of the clock. Outside of the process you can type cast CNT_uns to std_logic_vector within a signal
assignment from CNT_uns to CNT. This will in effect create a 24-bit counter of type std_logic_vector. The reason that
the counter needs to be of type std_logic_vector is because it will be assigned to a variety of other ports in the system
that are also of type std_logic_vector.
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Connect the 24-Bit Counter Output to a Variety of I/O on the DEO-CV

Now you are going to connect the output bits of the counter to the 1/0 on the DEO-CV as shown in Figure 9.14.
You will need to instantiate 6x versions of your char_decoder.vhd subsystem to drive the 6x HEX displays. The inputs
to the char_decoder.vhd instances will be groups of 4-bits from the counter. The least significant 10-bits of the counter
should be connected to the 10x red LEDs (LEDR). Finally, the least significant 8-bits of the counter should be connected
to 8 pins of the GPIO_1 header.

Assign the Pins for the Additional 1/0 used in this Exercise

Since you copied this project from lab 9.2 and are using a subset of the ports, you should not have to import any
signal assignments. Launch the Pin Planner tool and verify that all of your ports have the correct assignments. If they
do not, correct them.

Note that it is OK for the Pin Planner to have locations for ports that are not being used in your entity. The
synthesizer will automatically remove them from your design. Once the assignments are verified, close the Pin Planner
tool.

Compile your Design

Compile your design and fix any errors that you encounter.

Download and Test Your Design

Open the programmer tool and download your design to the FPGA. You should now see a counter pattern on the
LEDRs and HEX displays. You should be able to change the frequency of you counter by moving the SW(1) and SW(0)
switches. Verify that your design works as expected by observing the LED I/O on the DEO-CV board. Fix any errors
you discover. Take a short video (<5 s) showing the proper operation of your design. You should show that the counter
frequency can be altered using SW(1) and SW(0). This video satisfies the requirements for deliverable #1.

9.3.5.2 Take a Logic Analyzer Measurement of your Counter

Now you are going to take a logic analyzer measurement of the lower 8-bits of your counter, which are being driven
to the pins on the GPIO_1 header. Connect the logic channels 0 - 7 of the Analog Discovery to the GPIO_1 header
as shown in Figure 9.14 and Figure 9.15. Make sure to connect the ground of the Analog Discovery to the GPIO_1
header. Launch Waveforms and click on the Logic tool. In the logic analyzer tool, create a new bus called “CNT” and
add channels DIO0 - DIO7 to the bus. Click “Add”.

On the DEO-CV board, set the frequency of your counter to 191 Hz using the SW(1) and SW(0) switches. While
there are a variety of settings that will need to be configured, go ahead and click on the “Single” button to take a
measurement. After the measurement, you will see a decimal value for CNT and also some edges on the signals (7:0).
You are probably zoomed out too far to see anything meaningful. Adjust the zoom by selecting different values in the
Base setting drop-down in the upper right corner of the screen. Each time you zoom out, you'll need to click the “Single”
button to re-run the analyzer and fill the screen. At 191 Hz, a setting of 0.01 s/div is a good zoom factor. Set the trigger
to look for CNT=x"00". Now when you click the “Single” button, you'll notice that the center of the waveform screen is
the transition between 255 to 0. Keep in mind that when running at a frequency of 191 Hz, the 8-bit counter will roll
over to x"00” every 1.34 seconds. This means that the analyzer will only trigger every 1.34 seconds and you'll see a
noticeable delay between when the screen is updated and when it is waiting for a trigger. Use the HotTrack tool to
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measure the pulse width of the counter. With your clock divider configured to provide a 191 Hz clock to your counter,
the pulse width should be around 5.2 ms. Your measurement will now look like Figure 9.18.
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Figure 9.18

Logic Analyzer Measurement of CNT with Trigger set to x"00"

Take a screenshot of the logic analyzer measurement displaying the HotTracks measurement of your pulse width.
Save the image in JPG format with a descriptive file name. This image satisfies the requirements for deliverable
#2.

Save your Analog Discovery workspace in your Quartus project directory so that you can recreate this
measurement in the future if needed. Close Waveforms..

9.3.5.3 Save a Copy of your top.vhd for your Records
Locate the top.vhd file for this exercise. This file satisfies the requirements for deliverable #3.

After you are done, close your Waveforms and Quartus projects.

Lab 9.3 After completing this lab exercise, can you:

e Implement a counter using a single process in VHDL?
o Implement a selectable, 2" clock divider subsystem?
e Measure the frequency of the counter using a logic analyzer?
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Lab 9.4: Precision Clock Divider and a BCD Counter

9.4.1 Objective

This objective of this lab is to provide more practice modeling counters in VHDL using single processes. In the
first part of the lab, you will create a precision clock divider that is capable of outputting four different clock frequencies:
1 Hz, 10 Hz, 100 Hz, and 1 kHz. This will be accomplished using a counter process and selectable range checking.
You will measure the frequency of the divided down clock using the Analog Discovery’s oscilloscope tool. In the second
part of the exercise, you will be designing a 6-symbol, binary coded decimal (BCD) counter that will be driven to the six
character displays on the DEO-CV board. This will be accomplished using six separate, but interdependent processes.

9.4.2 Learning Outcomes
After completing this lab you should be able to:

e Implement a precise timing event using a counter modeled with a VHDL process and range checking.
e Create a multi-symbol BCD counter using interdependent VHDL counter processes.

9.4.3 Parts Needed

e DEO-CV FPGA board.
e Analog Discovery 2.

9.4.4 Deliverables
The deliverable(s) for this lab are as follows:

1. Oscilloscope measurement of the output of a precision clock divider (45% of the exercise).

2. Demonstration of a 6-symbol, BCD counter displayed on the character displays of the DEO-CV FPGA
board (45% of exercise).

3. Provide your top.vhd design file (10% of exercise)

9.45 Lab Work & Demonstration

You are going to create a BCD counter that will drive the 6x HEX displays on the DEO-CV board. This system will
count from 00000010 to 99999910 and then roll over. Note that the symbols are in decimal, not hexadecimal. You will
be using binary coded decimal to implement the counter. Each symbol in the counter will be driven by its own process
through its own char_decoder.vhd sub-system. You will also be creating a new precision clock divider
(clock_div_prec.vhd) to slow down the incoming 50 MHz in order to clock the BCD counter at a slower rate. This new
clock divider will allow the system to be clocked at frequencies of 1 Hz, 10 Hz, 100 Hz, and 1 kHz. The divided down
clock will be observed on LEDR(0) and GPIO_1(0). To verify that the clock divider is producing the correct frequencies,
the Analog Discovery’s oscilloscope tool will be used to measure the clock on GPIO_1(0). Figure 9.19 shows a block
diagram of the system in this exercise.
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Block Diagram of the BCD Counter System

Figure 9.20 shows a picture of the I/O that will be used in this exercise.
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9.4.5.1 Implement the Precision Clock Divider

Create a New Quartus Project by Copying Lab 9.3

Open lab 9.3 in Quartus. Use the Copy Project feature to create the project for this lab. Name the folder and
project “Lab_09p4_prec_clockdiv_n_bcd_counter”. Manually copy the pin_assignments.csv file into your new project
directory. You will not need to modify the entity or packages in the top.vhd.

Create a Selectable, Precision Clock Divider

In prior labs we slowed down the system clock using a ripple counter architecture. The ripple counter architecture
provided a simple way to slow down the clock using a series of D-flip-flop devices configured in toggle-flop
configurations. The disadvantage of this approach is that the clock frequencies available are only in increments of 2".
Using a 2" clock divider approach makes it difficult to get an exact clock frequency such as 1 Hz or 10 Hz.

Another approach to creating a clock divider is using a single process counter and range checking. You can create
precise timing events by simply counting up to a certain value and then setting the counter back to zero. Each time the
counter reaches its maximum range, you can perform a task such as toggling a bit. This allows you to create timing
events that have a precision of +/- % of the period of the incoming clock.

As an example, let's say you wanted to create a divided down clock with a frequency of 5 Mhz. This clock has a
period of Taiv=200 ns. Using a precision clock divider approach, we want to design a counter that toggles the output
clock signal every 100 ns. Remember that to toggle a signal means if it was a 1, it will be changed to a 0, and if it was
a 0, it will be changed to a 1. In the DEO-CV system, the incoming clock is 50 MHz, which has a period of Tin=20ns. If
you create a counter based on the incoming clock, it will increment every 20ns. If you create a counter that increments
up to 5 and then is set back to 0, the setback event will occur every 5x20ns=100ns. Each time the counter reaches its
maximum value and needs to be manually set back to zero, you can also have it toggle the output clock signal. This
will result in an output signal with a HIGH time of 100ns, a LOW time of 100ns, and an overall period of 200ns. In this
way, you have created a divided down clock with a frequency of 5 MHz. Figure 9.21 shows a graphical depiction of
this example.

@ The incoming clock has a frequency of 50 MHz. This corresponds to a period of 20 ns.
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Since the counter increments 5 times (i.e., 0 to 4) and then toggles the output, the Clock_Out
changes values every 100 ns (5x20ns). This results in a HIGH time of 100ns and a LOW time of
100ns. This gives a 200ns period and a resulting frequency of 5SMHz.

Figure 9.21

Graphical Depiction of the Operation of the Precision Clock Divider
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You are going to create a precision clock divider that outputs four different clock frequencies: 1 Hz, 10 Hz, 100 Hz,
and 1 kHz. This will be accomplished using the counter approach described above. The first step is to determine the
maximum range of the your counter to accomplish these frequencies. Using the approach above, determine the upper
values of your counter to achieve the four frequencies. Remember that when the counter reaches its maximum value,
it will toggle the clock frequency. This means your maximum value represents how long the clock will be HIGH or LOW.
Said another way, you are trying to find the number of times that the period of a 50 MHz clock (i.e., 20ns) will go into
half of the desired clock period.

e Maximum Value of Counter to Achieve Divided Clock of 1 Hz

e Maximum Value of Counter to Achieve Divided Clock of 10 Hz
e Maximum Value of Counter to Achieve Divided Clock of 100 Hz =
e Maximum Value of Counter to Achieve Divided Clock of 1k Hz =

Create a new VHDL file in Quartus called clock_div_prec.vhd. Include the packages std_logic_1164 and
numeric_std. Use the following entity definition.

entity clock _div_prec is

port (Clock_in : in std_logic;
Reset - in std_logic;
Sel : in std_logic_vector (1 downto 0);

Clock_out : out std_logic);
end entity;

You will now enter the architecture for the precision clock divider. Your counter will output one of four different
clock frequencies (1 Hz, 10 Hz, 100 Hz, and 1 kHz) depending on the values of Sel. You will create a process that
increments a counter on the rising edge of Clock_In (note that Clock_In will be connected to Clock_50 in the top.vhd).
Your counter should increment up to a maximum value and then be setback to 0. Every time your counter reaches its
maximum value, you should toggle Clock_out. The maximum value that your counter will increment to depends on the
inputs Sel(1) and Sel(0). You calculated the maximum values for these four frequencies above.

Some tips:

e You are going to have a single process to implement your counter. This process will have Clock_in and
Reset in the sensitivity list. Consider having a second process that will be used to assign the maximum
value for the counter based on Sel. You will need to create an internal signal to hold the maximum
value. In this way, you can simply compare your current count value to this new signal as if it was a
constant. Anytime Sel changes, the signal will be updated independent of your main counter process.
The process to make the maximum value assignment will only have Sel in the sensitivity list.

e Consider using the type integer for your counter. This way you can set the maximum value in integer
format instead of hex. Since the internal counter doesn’t get assigned to any ports, it does not have to
be of type std_logic_vector.

e In your main counter process, you will want to update Clock_out whenever the system is reset, or when
the counter reaches its maximum value. Since Clock_out is an output port, it can’t exist on the right-
hand-side of an assignment. This means you can't directly do the assignment:

Clock_out <= not Clock_out. Consider creating an internal signal to hold the value of the divided clock.
This will allow the signal to exist on the right-hand-side of the assignment. Outside of the process, you
can then assign this internal signal to the output port Clock out.

Save your design. Back in your top.vhd file, declare your clock_div_prec.vhd design as a component and
instantiate it. Note that since you copied lab 9.2, you already have a component declaration for clock_div_2ton.vhd
with the exact same entity definition. All you need to do is change the name of this component to clock_div_prec to
use your new divider system.

Connect the Clock div to LEDR(0) and GPIO 1(0)

In top.vhd, connect the Clock_div signal coming out of clock_div_prec.vhd to LEDR(0) and GPIO_1(0). Save your
design.
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Compile your Design

Compile your design and fix any errors that you encounter.

Download and Test Your Design

Open the programmer tool and download your design to the FPGA. When you set SW(1) and SW(0) to either the
1 Hz or 10 Hz setting, you should see LEDR(0) blinking. When you change to the 100 Hz or 1 kHz setting, the LED
will be blinking too fast to see and it will appear on.

Take an Oscilloscope Measurement of the Divided Down Clock

Configure SW(1) and SW(0) to output the 1 kHz clock rate. Now you are going to use the oscilloscope within the
Analog Discovery to verify the frequency of Clock_Div on the GPIO_1(0) pin. An oscilloscope is an instrument that
displays an electrical signal graphically. It is one of the most commonly used instruments to debug electrical circuits.
The Analog Discovery contains two oscilloscope channels. Each channel has two wires (1+/1- and 2+/2-). The -
channels will always be connected to ground for the exercises in this manual. Connect the probe wire labeled 1+ to
the GPIO_1(0) pin on the GPIO_1 header. Connect the probe wire labeled 1- to a GND pin on the GPIO_1 header.
Refer to Figure 9.19 for the pin locations. Plug in the Analog Discovery to your computer using the USB cable. Launch
the Waveforms application.

In the Waveforms “Welcome” tab, click on the “Scope” tool. A new tab will appear called “Scope 1”. Go to this tab
and you'll see a measurement screen. Both channels of the oscilloscope will be displayed on this screen by default.
Turn off channel 2 by unchecking the box next to its zoom control on the right of the screen.

An oscilloscope sets the zoom using divisions. The vertical axis is always voltage, and is measured in
volts/division, or V/div. Each line on the measurement screen is a division. The offset of the measurement can also
be configured. For channel 1, set the zoom controls to:

e Offset=-1.45V
e Range = 0.5 V/div

On the right side of the screen you'll also see zoom controls for time. Again, both a scaling per division is given
(base) and a horizontal offset (position). Oscilloscope are usually used for signals that are fast enough that they can’t
be observed with the human eye. In this part, we will be measuring a 1 kHz signal so we need to configure the time
zoom accordingly. Configure the time control to:

e Position=0s
e Base =1 ms/div

When signals are too fast to be seen with the human eye, simply displaying what the oscilloscope is measuring on
the screen would result in the entire screen being lit up. To handle displaying fast repetitive signals, an oscilloscope
uses a trigger. A trigger represents an event that occurs on the incoming signal, such as a rising edge passing through
a certain voltage level. When this occurs, the oscilloscope positions all of its recorded data on the screen with the
trigger moment located at time=0s. As the oscilloscope continues to run, it will continually trigger and overwrite the
data on the screen with the new set of data positioned with the trigger at time=0s. If the signal is repetitive, the resulting
screen will show a steady waveform in which the characteristics of the signal can be determined. We want to setup
the trigger so that every time Channel 1 has a rising transitions that passes through 1.7v, the oscilloscope will trigger.
Along the top of the measurement screen there are a variety of trigger settings. Configure these as follows:

Mode = Auto
Source = Channel 1
e Condition = Rising
Level = 1.7V

Now we are ready to take an oscilloscope measurement. Press the “Run” button (the green triangle). You will see
the waveform in Figure 9.22. Note that the background can be changed from Dark to Light using the setup gear button
in the upper right corner of the waveform. You can also change the thickness of the line. Making the background light
and the line thicker makes taking and printing screenshots easier.
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Oscilloscope Measurement of 1 kHz Divided Down Clock

Turn on the HotTracks measurement tool (the ruler in the upper right corner of the waveform pane). As you drag
your mouse over the waveform, you'll see a variety of different measurements. When you place your marker in the
vertical center of the waveform, you'll see the period measurement and corresponding frequency. If your clock divider
is operating correctly, you should see a 1 kHz square wave. Verify that your clock divider works for the 100 Hz, 10 Hz
and 1 Hz settings. When you change SW(1) and SW(0), you'll need to zoom in/out to get a visible square wave on the
screen. Note that the 1 Hz measurement will take ~10 seconds to fill up the screen.

After verifying that all four clock frequencies operate as expected, change SW(1) and SW(0) back to the 1 kHz
setting and take a screenshot showing that HotTracks is measuring a 1 kHz signal (+ or — a few Hz). Save the image
in JPG format with a descriptive file name. This image satisfies the requirements for deliverable #1. Save your
Waveforms workspace so you can recreate this measurement in the future.

9.4.5.2 Implement the 6-Digit BCD Counter

Now you are going to create the 6-digit BCD counter that will display count values from 00000010 to 99999910 on
the HEX displays. A BCD code is a 4-bit value that represents a single decimal number between 010 and 910. The
difference between a BCD code and a standard unsigned 4-bit binary code is that the BCD code rolls over at 910 instead
of continuing up through the hex values A, B, C, D, E, and F. Note that to count up to 910 still requires 4-bits, so a BCD
number doesn’t use all of the available codes that are possible. BCD codes are very popular for driving character
displays because these types of displays typically only use decimal numbers, not hex. When using BCD codes to drive
character displays, each character is driven by its own 4-bit BCD code.

One of the challenges of using BCD codes is that when the code is incremented, the circuitry must be able to
handle rolling over back to 010 (00002) after it reaches 910 (10012). This is different from an unsigned 4-bit counter that
rolls over from Fis (11112) to 016 (00002) on its own. A single digit BCD counter can be easily created using a single
process with range checking in VHDL. The counter increments on every rising edge of the clock, but has a nested
iffelse clause that checks whether it has reached its maximum value. When it has, it sets the value back to zero instead
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of letting it go higher than 9. Refer to section 9.4.2 in the textbook to see an example of a counter implemented with
an integer data type and range checking.

Another complexity of BCD counters comes when more than one digit is used. Each digit is driven with its own
process, but each higher position process depends on the lower position values relative to its own position. There are
two considerations when implementing the process for a digit that isn’t in the lowest position. The first consideration is
when to set it back to 0. It does not simply setback to 0 when it reaches its maximum value. Instead, it is only setback
to 0 when itself and all lower position digits are at their maximum value. As an example, let’s look at a 2-digit number.
When this number reaches 9010, it does not set the digit in p=1 back to zero, even though it has reaches its maximum
value of 910. Instead, it is setback to zero when it reaches 9910 because itself and all lower position digits have reached
their maximum values. This is handled within the process in the same way that the maximum range is handled, except
that the condition for when to set it back to 0 must include all lower position values. This can be handled by including
a Boolean AND operation within the if clause for the range checking.

The second consideration is that the higher order digit doesn’t increment on every edge of the triggering clock.
Instead, it only increments when all of the lower position digits have reached their maximum value. As an example,
let's again consider a 2-digit decimal number. For the first 9 counts, only the least significant digit is incrementing (0010
- 0110 2 0210 2...). Only when the least significant digit reaches its maximum value of 910 and is setback to 0 does
the digit in the higher position increment (0810 = 0910 = 1010). This means the process implementing the incrementing
behavior of the counter must have an additional if clause that checks whether the lower position bits are at their
maximum values. Only if they are is the higher order counter incremented.

Implement the 6x separate processes for the BCD counter. It is recommended that you implement and test each
process before moving to the next higher order digit. The counter result of each process will be driven into the
char_decoder.vhd components in order to drive each HEX display.

Compile your Design

Compile your final design and fix any errors that you encounter.

Download and Test Your Design

Open the programmer tool and download your design to the FPGA. You should now see a counter pattern on the
HEX displays. You should be able to change the frequency of you counter by moving the SW(1) and SW(0) switches.
Fix any errors you discover. Take a short video (<5 s) showing the proper operation of your design. You should show
that the counter frequency can be altered using SW(1) and SW(0). This video satisfies the requirements for
deliverable #2.

9.4.5.3 Save a Copy of your top.vhd for your Records
Locate the top.vhd file for this exercise. This file satisfies the requirements for deliverable #3.

After you are done, close your Waveforms and Quartus projects.

Lab 9.4 After completing this lab exercise, can you:

e Implement a counter using a single process in VHDL?
e Implement a selectable, 2" clock divider subsystem?
e Measure the frequency of the counter using a logic analyzer?
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Lab 10.1: ROM Memory

10.1.1 Objective

This objective of this lab is to gain experience modeling read only memory (ROM) in VHDL. You will design a
synchronous, 64x8 ROM array and pre-populate it with known values. You will then create an address counter that
will cycle through all 64 addresses in order to continually read the contents of the ROM. You will observe the address
and output of the ROM on the HEX displays and using the logic analyzer.

10.1.2 Learning Outcomes
After completing this lab you should be able to:

¢ Implement a synchronous, 64x8 ROM array with pre-populated values.
e Implement a system that continually reads the contents of the ROM using an address counter.
e Observe the ROM system operation using a logic analyzer.

10.1.3 Parts Needed

e DEO-CV FPGA board.
e Analog Discovery 2.

10.1.4 Deliverables
The deliverable(s) for this lab are as follows:

1. Demonstration of a ROM system that continually reads the values of the array and displays the input
address and output data on the HEX displays (70% of exercise).

2. Alogic analyzer measurement showing the operation of the ROM system (20% of exercise).

3. Provide your top.vhd design file (10% of exercise).

10.1.5 Lab Work & Demonstration

You are going to create a synchronous, 64x8 ROM array (rom_64x8_sync.vhd) and populate it with known values.
The ROM component will be instantiated in your top.vhd where you will drive its address input with an address counter
process. The address counter and ROM will be clocked with a divided down clock coming from your clock_div_prec.vhd
component. The address will be displayed on the HEX5 and HEX4 displays through your char_decoder.vhd
component. The 8-bit output of the ROM array will be displayed on the HEX1 and HEXO displays through your
char_decoder.vhd. The HEX3 and HEX2 displays will be turned off by driving constant “1111111” vectors to each
display. You will drive the address, output of the ROM, and divided clock to the GPIO_1 header for observation with
the logic analyzer. Figure 10.1 shows a block diagram of the ROM system.
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Figure 10.1
Block Diagram of the ROM Memory System

Figure 10.2 shows a picture of the ROM memory system implemented on the DEO-CV board.
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Figure 10.2
Picture of the ROM Memory System on the DEO-CV Board
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10.1.5.1 Implement the ROM System
Create a New Quartus Project by Copying Lab 9.4

Open lab 9.4 in Quartus. Use the Copy Project feature to create the project for this lab. Name the folder and
project “Lab_10p1_ROM_memory”. Manually copy the pin_assignments.csv file into your new project directory.

Modify the Entity for this Exercise

In this exercise, you will be using almost the same 1/0 from lab 9.4 with the exception that the GPIO_1 port will be
expanded to 15 bits. Modify the size of the GPIO_1 port. When done, the package and entity portion of your design
should look like Figure 10.3.

@Text Editor - C:/Users/k91h784/Desktop/Logic_Lab/Lab_10p1_ROM... = a X
File Edit View Project Processing Tools Window Help 0
Hei =F MR 00 Y ws
1 Tibrary IEEE; A
2 use TEEE.STD_LOGIC_1164.ALL;
3 use IEEE.NUMERIC_STD.ALL;
4
5
6 centity top is
7 8 port (Clock_50 : in std_logic;
8 Reset = in std_logic;
9 Sw : in std_logic_vector (3 downto 0);
10 LEDR : out std_logic_vector (9 downto 0Q);
Ll HEXO : out std_logic_vector (6 downto Q);
12 HEX1 : out std_logic_vector (6 downto 0Q);
613 HEX2 1 out std_logic_vector (6 downto 0);
14 HEX3 : out std_logic_vector (6 downto 0);
15 HEX4 : out std_logic_vector (6 downto 0);
16 HEX5 : out std_logic_vector (6 downto 0);
a7 GPIO_1 : out std_logic_vector (14 downto 0));
18 |end entity;
19 b
< >
Ln8 Col24 VHDL File 100%  00:01:03
Figure 10.3

Entity for ROM System

Create a Synchronous, 64x8 ROM

You are going to create a model for a synchronous, 64x8 ROM array. This will require creating a new VHDL file
in Quartus. Your file should be called “rom_64x8_sync.vhd”. Since there are 64 address locations, the ROM will
require 6x address lines (26=64). The output data_out will be 8-bits wide. The output should be updated with the
contents located at the provided address on the rising edge of the clock. Since this is a memory device, there is not a
reset like in a D-flip-flop storage device. Refer to example 10.3 in the textbook for details on how to model a ROM in
VHDL. Figure 10.4 shows the entity definition and contents that should be placed in the ROM array.
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Address Data

0 x"00"
1 x"11”
2 x"22"
3 x"33"
4 a4 rom_64x8_sync.vhd
5 x"5%" - -
6 X"66" B 5
7 X =44 address data_out =
8 X"88"
9 X 89
10 AR -
11 X'BB” >
12 ¥Co
13 x"DD”
14 X"EE”
15 K'FF”
16 X,FF, entity rom 64x8 sync is
17 X_‘EE“ port (clock ~ : in std logic;
18 x'DD address : in std_logic_vector(5 downto 0);
19 x"CC” data_out : out std logic vector(7 downte 0));
20 x"BB" end entity;
21 XAA
29 x99
93 X85
24 X7
25 X 66"
26 x"55"
27 x"44
28 X"
29 x"22"
30 x"11"
31 x"00”
& EEn All addresses between 32 and
l l 63 should hold x"00"
63
Figure 10.4

ROM Array Contents and Entity Definition

Back in your top.vhd file, declare your rom_64x8_sync.vhd design as a component and instantiate it. You should
create two internal signal vectors called address and ROM_data_out to connect to the component. You will drive the
component’s clock with Clock_div coming out of your clock_div_prec.vhd.

Create the Address Counter

In your top.vhd, create an address counter using a single process. The counter should increment from 0 to 63 and
then roll over continuously. The counter will increment on the rising edge of Clock_div and reset based on the input
port Reset.

Connect the ROM Signals to a Variety of /0 on the DEQ-CV

First, you are going to observe the operation of the ROM on the HEX displays. The address will be displayed on
HEX5 and HEX4. Since the address counter is only 6-bits wide, the upper two bits will need to be concatenated with
“00” when connected to the HEX5 char_decoder.vhd. The ROM_data_out vector will be displayed on HEX1 and HEXO.
This will require 4x instantiations of your char_decoder.vhd component. You should turn off the HEX3 and HEX2
displays by driving them directly with 1's.

In the second part of this exercise, you'll observe the ROM operation on the logic analyzer. Connect
ROM_data_out to the GPIO_1 header pins DO = D7. Connect address to the GPIO_1 header pins D8 = D13. Connect
Clock_div to the GPIO_1 header pin D14.
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Assign the Pins for the Additional 1/0 used in this Exercise

You will need to provide pin locations for the additional GPIO_1 signals used in this exercise. Locate these in the
DEO-CV user’s manual. Update your pin_assignments.csv file. Import the assignments into Quarts.

Compile your Design

Compile your design and fix any errors that you encounter.

Download and Test Your Design

Open the programmer tool and download your design to the FPGA. You should now see the address and
ROM_data_out on the HEX displays. You can set the clock frequency to 1 Hz to verify that each location in the ROM
array contains the correct data. Keep in mind that addresses 32 = 63 contain 0's. You'll notice that the data is one
clock behind the address. This is because it takes a finite amount of time for the address to be produced after the clock
edge so it is not visible to other systems on that same edge. It is on the next clock edge that the ROM is able to see
the address that was produced and output the corresponding data. Verify that your design works as expected including
the reset function. Fix any errors you discover. Set the clock to 10 Hz. Take a short video (<5 s) showing the proper
operation of your design. This video satisfies the requirements for deliverable #1.

10.1.5.2 Take a Logic Analyzer Measurement of your ROM System

Now you are going to take a logic analyzer measurement of the ROM system. Connect the logic channels 0 > 14
of the Analog Discovery to the GPIO_1 header as shown in Figure 10.1 and Figure 10.2. Make sure to connect the
ground of the Analog Discovery to the GPIO_1 header. Launch Waveforms and click on the Logic tool. In the logic
analyzer tool, add new busses for “address” and “ROM_data_out” and assign the logic channels accordingly. Display
the address in decimal format. Add a new signal for Clock_div and assign the logic channel accordingly.

On the DEO-CV board, set the frequency of your counter to 1 kHz using the SW(1) and SW(0) switches. While
there are a variety of settings that will need to be configured, go ahead and click on the “Single” button to take a
measurement. After the measurement, you will see values for address, ROM_data_out, and Clock_div. Set the
Position to 0.02 s and the Base to 5 ms/div. Set the trigger to address="000000". Run the logic analyzer continuously
You should see the contents of the ROM being read out. Your measurement should look like Figure 10.5.

m WaveForms (Lab10a_ROM_memory) e o p
Workspace Settings Window Help
Welcome, + Help Logic1 @
Eile Control View Window
T . B e
* L= . - Te
Name [e] | Trig'd !ZEIL‘.O samples at 40 kHz | 2017-07-15 18:38:51.953 ©
hock,mv '.)( NNOnnnr NONNNr [ T MIr I nr Nrr ERRERRRERRE _'_'—L
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Figure 10.5
Logic Analyzer Measurement of ROM System

Take a screenshot of the logic analyzer measurement. Save the image in JPG format with a descriptive file name.
This image satisfies the requirements for deliverable #2.

Save your Analog Discovery workspace in your Quartus project directory so that you can recreate this
measurement in the future if needed. Close Waveforms.

10.1.5.3 Save a Copy of your top.vhd for your Records
Locate the top.vhd file for this exercise. This file satisfies the requirements for deliverable #3.

After you are done, close your Quartus project.
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Lab 10.1 After completing this lab exercise, can you:

e Implement a synchronous, 64x8 ROM array with pre-populated values?

e Implement a system that continually reads the contents of the ROM using an address
counter?

e Observe the ROM system operation using a logic analyzer?
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Lab 10.2: Read/Write Memory

10.2.1 Objective

This objective of this lab is to gain experience modeling read/write memory (R/W) in VHDL. You will design a
synchronous, 32x8 R/W memory. You will then create an address counter with enable that will provide the 32
addresses for the array. You will create a control finite state machine that will facilitate writing information to the memory
and also reading information to verify it is storing correctly. You will observe all of the critical signals using the logic
analyzer.

10.2.2 Learning Outcomes
After completing this lab you should be able to:

e Implement a synchronous, 32x8 R/W array.

e Implement an address counter with enable.

¢ Implement a FSM that controls how information is written to, and read from, the R/W array.
e Observe the R/W system operation using a logic analyzer.

10.2.3 Parts Needed

e DEO-CV FPGA board.
e Analog Discovery 2.

10.2.4 Deliverables
The deliverable(s) for this lab are as follows:

1. Demonstration of your R/W system displaying read and write operations on the HEX displays and red
LEDs (50% of exercise).

2. Alogic analyzer measurement showing a write operation to the R/W array (20% of exercise).

3. Alogic analyzer measurement showing a series of read operations from the R/W array (20% of
exercise).

4. Provide your top.vhd design file (10% of exercise).

10.2.5 Lab Work & Demonstration

You are going to create a synchronous, 32x8 R/W array (rw_32x8_sync.vhd). The R/W component will be
instantiated in your top.vhd where you will drive its inputs using the slider switches SW(9 downto 2). A FSM will control
writing to, and reading from, the R/W array. An address counter with enable will provide the address to the R/W array.
The address will be displayed on the HEX5 and HEX4 displays through your char_decoder.vhd component. The 8-bit
output of the R/W array will be displayed on the HEX1 and HEXO displays through your char_decoder.vhd. The HEX3
and HEX2 displays will be turned off by driving constant “1111111" vectors to each display. You will drive the address,
output of the R/W array, the divided clock, the address counter enable, and the memory write signals to the GPIO_1
header for observation with the logic analyzer.

When KEY(0) is pressed, the information on the slider switches will be written to the next address in the R/W array.
The control FSM will enable the address counter for one increment and then assert the write signal for the memory. In
this way, information can be populated into the R/W array by setting values on the switches and continually pressing
KEY(0). When KEY(1) is pressed, the address counter will run freely in order to output the data at each location within
the R/W array. In this way, the contents of the array can be verified to ensure that the write operations were successful.
All critical signals will be connected to pins on the GPIO_1 header for observation with the logic analyzer. Figure 10.6
shows a block diagram of the R/W system.
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Block Diagram of the R/W Memory System

Figure 10.7 shows a picture of the R/W memory system implemented on the DEO-CV board.
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Picture of the R/W Memory System on the DEO-CV Board

10.2.5.1 Implement the R/W Memory System
Create a New Quartus Project by Copying Lab 10.1

Open lab 10.1 in Quartus. Use the Copy Project feature to create the project for this lab. Name the folder and
project “Lab_10p2_RW_memory”. Manually copy the pin_assignments.csv file into your new project directory.

Modify the Entity for this Exercise

In this exercise, you will add a new input port called KEY. This will be used to read from the active LOW push
button switches on the DEO-CV board. This port will be 2-bits wide to support reading from the KEY(0) and KEY(1)
buttons. You will also need to expand the width of the SW port to 10-bits to handle reading from all 10x slider switches.
Finally, you will need to expand the GPIO_1 port to 16-bits to handle the logic analyzer measurement of all of the critical
signals in the system. When done, the package and entity portion of your design should look like Figure 10.8.

@Text Editor - C:/Users/k91h784/Desktop/Logic_Lab/Lab_10p2_RW_... = [m] X
Eile Edit View Project Processing Tools Window Help Search altera.com e
W EE AN AT ==
1 Tlibrary IEEE; A
2 use IEEE.STD_LOGIC_1164.ALL;
3 use IEEE.NUMERIC_STD.ALL;
4
5
6 centity top is
7 &5 port (Clock_50 : in std_logic;
8 Reset = 1n std_logic:
9 SW »in  std_logic_vector (9 downto 0);
10 KEY :in std_logic_vector (1 downto 0Q);
11 LEDR : out std_logic_vector (9 downto Q);
12 HEX0 ; out std_logic_vector (6 downto Q);
13 HEX1 : out std_logic_vector (6 downto Q);
14 HEX2 » out std_logic_vector (6 downto Q);
15 HEX3 : out std_logic_vector (6 downto Q);
16 HEX4 : out std_logic_vector (6 downto 0);
17 HEXS5 : out std_logic_vector (6 downto 0);
18 GPIO_1 : out std_logic_vector (15 downto 0));
19 |end entity;
20 v
2ial
< >
0% * 00:00:14
Figure 10.8

Entity for R/'W Memory System
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Create a Synchronous, 32x8 Read/Write Memory

You are going to create a model for a synchronous, 32x8 R/W memory array. This will require creating a new
VHDL file in Quartus. Your file should be called “rw_32x8_sync.vhd”. Since there are 32 address locations, the R/W
memory will require 5x address lines (25=32). The system will have an 8-bit input called data_in and an 8-bit output
called data_out. There is also an input called write. When write is asserted, the information on data_in will be stored
to the input address location on the rising edge of the clock. The system will continually output the data at the provided
address on data_out on every rising edge of clock. Refer to example 10.5 in the textbook for details on how to model
a ROM in VHDL. Figure 10.9 shows the ports and entity definition for the R/W memory array.

nw_32x8_sync.vhd

,al_ da[a_in data out _’S._ entity rw_32x8_sync is
y = port (clock : in std logic;
T write data_in : in std_logic_vector (7 downto 0);
write ¢ in  std_logic;
4~ address address : in std logic vector (4 downto 0);
_> data out : out std logic vector (7 dewnto 0));
end entity;

Figure 10.9
R/W Ports and Entity Definition

Back in your top.vhd file, declare your rw_32x8_sync.vhd design as a component and instantiate it. You should
create an internal signal called write and two internal signal vectors called address and RW_data_out to connect to the
component. The data_in port of the rw_32x8_sync.vhd component will be connected to SW(9 downto 2). You will
drive the component’s clock with Clock_div coming out of your clock_div_prec.vhd.

Create the Address Counter

In your top.vhd, create an address counter using a single process. The counter should have a synchronous, active
HIGH enable. Create an internal signal called addr_EN to serve as the enable line. When addr_EN is asserted, the
counter will increment on the rising edge of Clock_div. When addr_EN is deasserted, the counter should hold its current
value. The counter will increment from 0 to 31 and then roll over. The counter should have an asynchronous, active
LOW reset.

Create the Control FSM

The R/W operation will be facilitated by a control FSM. The state diagram for the FSM is given in Figure 10.10.
You will implement the FSM using the three process, behavioral modeling approach described in Chapter 8 of the
textbook. The FSM will have two primary functions. The first is to handle storing the values of SW(9 downto 2) to the
R/W memory. When KEY(0) is pressed, the FSM will increment the address counter by asserting addr_EN for one
clock cycle. It will then assert write for one clock cycle. This will have the effect of storing the values on the switches
to the next address in R/W memory. When running the clock at 1 kHz, you will not be able to press and release KEY(0)
before the FSM returns to its START state and looks for another key press. This means that a single button press
could result in hundreds of writes to memory. To avoid this behavior, the FSM will have a state that waits for KEY(0)
to be released. In this way, each KEY(0) press only results in one write operation to R/W memory. This functionality
is labeled the “Store Path” in Figure 10.10. Note that the push buttons are active LOW, meaning that when not pressed,
they produce a logic 1 and when pressed they produced a logic O.

The second function that the FSM will handle is reading out the contents of memory. When KEY(1) is pressed,
the FSM will assert addr_EN for as long as the button is held down. In this way, the address counter will increment on
every rising edge of clock. This will result in the R/W array outputting the contents of each address on the rising edge
of clock. This functionality is labeled the “Read Path” in Figure 10.10.
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Figure 10.10
State Diagram for R/'W Memory Control FSM

Connect the R/W Signals to a Variety of I/O on the DEO-CV

First, you are going to observe the operation of the R/W memory address and data out on the HEX displays. The
address will be displayed on HEX5 and HEX4. Since the address counter is only 5-bits wide, the upper bit will need to
be concatenated with “000” when connected to the HEX5 char_decoder.vhd. The RW_data_out vector will be displayed
on HEX1 and HEXO. This will require 4x instantiations of your char_decoder.vhd component. You should turn off the
HEX3 and HEX2 displays by driving them directly with 1's.

You will also observe the R/W memory operation on the logic analyzer. Connect RW_data_out to the GPIO_1
header pins DO > D7. Connect address to the GPIO_1 header pins D8 - D12. Connect Clock_div, addr_EN, and
write to the GPIO_1 header pins D13, D14, and D15 respectively.

Connect SW(9 downto 2) to LEDR(9 downto 2) so that the input data to the R/W is visible.

Assign the Pins for the Additional I/O used in this Exercise

You will need to provide pin locations for the KEY(0) and KEY(1) inputs and the additional GPIO_1(15) pin used
in this exercise. Locate these in the DEO-CV user's manual. Update your pin_assignments.csv file. Import the
assignments into Quartus.

Compile your Design

Compile your design and fix any errors that you encounter.

Download and Test Your Design

Open the programmer tool and download your design to the FPGA. You should now see the address and
RW_data_out on the HEX displays. You should also see the values of the upper eight slider switches on the upper 8
red LEDs. After the program is downloaded, the system will show address=x"00" and RW_data_out="00".
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Set the clock frequency to 10 Hz so that the system runs fast enough to quickly respond to a button press but slow
enough so that the values can be observed on the HEX displays. Set SW(9 downto 2)=x"AA” and press KEY(0). You
will see the address increment to x"01” and RW_data_out change to x“AA”. You have just stored x"AA” at address
location x”"01” in the R/W array. There are a few things to consider about this operation. First, there is a delay between
when the address increments and when RW_data_out updates. This is because it takes a few clock cycles to complete
the write. The FSM first increments the address to x’01” by asserting addr_EN. It then asserts write to store the
information. The data appears on RW_data_out one clock cycle after it was written because the write and read can't
occur simultaneously in the memory system.

Change the slider switches to x"EE” and press KEY(0). You will see the address increment to x’02" and
RW_data_out change to x“EE”. You have just stored x"EE” at address location x"02" in the R/W array. Continue to
write different data to the R/W array by changing the switches and pressing KEY(0). Record the values that you are
storing so that you can verify they were correctly written during the read operation. You don't need to fill up the array,
but you should write at least 10 values so that you have something significant to view during the read operation (next).

Now press the “FPGA_RESET” button to put the address back to x"00”. Remember that a reset has no impact on
the values within the R/W memory array. Resets only alter sequential circuits created with D-flip-flops (i.e., the FSM
state memory, the address counter, and clock_div_prec.vhd). This means that at any time you can put the address
counter back to x"00” by pressing reset. Press and hold KEY(1). You will see the address begin to increment and the
associated data be displayed. Verify that the values displayed are what you stored. If necessary, you can slow down
the clock to 1 Hz so you can see the values more clearly. You will notice that as soon as the RW_data_out is updated,
the address counter increments to the next value. This is the correct functionality; however, this means you will not
see the current address location corresponding to the displayed data at the same time. The address will always be
one more than the location being displayed.

Set the clock back to 10 Hz, press reset, and take a short video (<5 s) showing the values on the HEX displays
when holding down KEY(1). Since the only way for data to get into the R/W array is through the store operation
associated with a KEY(0) press, a video showing a sequence of read operations will inherently prove data was written.
The only constraint on this demonstration is that x’AA” must reside at address x"01” and X"EE” must reside at address
x"02". This video satisfies the requirements for deliverable #1.

10.2.5.2 Take a Logic Analyzer Measurement of your R/W System During a “Store”

Now you are going to take a logic analyzer measurement of the R/W system during a store. Connect the logic
channels 0 - 15 of the Analog Discovery to the GPIO_1 header as shown in Figure 10.6 and Figure 10.7. Make sure
to connect a ground of the Analog Discovery to a ground on the GPIO_1 header. Launch Waveforms and click on the
Logic tool. In the logic analyzer tool, add new busses for “address” and “RW_data_out” and assign the logic channels
accordingly. Set the format for these busses to Hexadecimal. Add new signals for Clock_div, addr_EN, and write and
assign the logic channels accordingly. Configure the following logic analyzer settings:

e Set the trigger to “Rising Edge” of addr_EN. Leave all other signals as “Don’t Care”.
e Buffer =100

e Run = Repeated

e Mode = Normal (This is critical! If left at Auto, measurement will not trigger correctly)
e Source = Digital

e Position =0.02 s

e Base =5 ms/div

Press the “Run” button on the logic analyzer tool. The analyzer will display “Armed” as it waits for the trigger (i.e.,
a rising edge on addr_EN).

On the DEO-CV board, set the frequency of your counter to 1 kHz using the SW(1) and SW(0) switches. Press
the reset button to put the address back to x"00”. Now set SW(9 downto 2)=x"AA” and press KEY(0). The logic analyzer
will trigger. You should see the measurement in Figure 10.11.



Lab 10.2: Read/Write Memory « 163

B WaveForms  (Lab10b_RW_memory) - u *
Workspace Settings Window Help
Welcome + Help @ Llogicl =
File Control View Window
B B i
* e . ~ T+
Narme 10 Armed 2000 samples ab 40 kHx | 2017-07-17 18:46:15.433
s i X U UL U A L L L U"IJ—IIUlﬂﬂ.I'LﬂJ'Lﬂ
addr_EN : I
write 15 X
+ address ho hi
+RW_data_out | ho haa |
X~ Sms 0ms Sms 10 ms 15ms 20 ms 25ms 30ms 35 ms 40 ms 45 ms
Trigger PC Discovery2 SN:210321A36DC9 Status: OK &
Figure 10.11

Logic Analyzer Measurement of R/W System — Storing X"AA” to Address Location x"01”

Take note of the synchronous behavior of the system. First, observe how the address does not update until one
clock cycle after addr_EN is asserted. This is because the addr_EN is produced by the FSM, which is triggered by the
edge of a clock. The counter process does not see the enable being asserted on the same clock edge because it takes
a small amount of the time for addr_EN to reach its final asserted value. Instead, it is seen on the next clock edge.
Even though it appears that addr_EN is deasserted when the next clock edge occurs, it is actually still present due to
the small amount of delay that exists as it moves to its deasserted state.

Second, notice how the data x"AA” does not appear on the R/W component until two clock cycles after write is
asserted. The first clock period delay is due to the same behavior described for the addr_EN signal. The second clock
period delay is due to the output not being able to display the data on the same edge that it is stored on.

Now change SW(9 downto 2)=x"EE” and press KEY(0). The logic analyzer will trigger. You should see the
measurement in Figure 10.12.
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Figure 10.12

Logic Analyzer Measurement of R/W System — Storing X"EE” to Address Location x"02”

Now store x”BB” to address location x”03”. Take a screenshot of this logic analyzer measurement. Save the
image in JPG format with a descriptive file name. This image satisfies the requirements for deliverable #2.

10.2.5.3 Take a Logic Analyzer Measurement of your R/W System During a “Read”

Now you are going to take a logic analyzer measurement of the R/W system during a read. Press the reset button
to put the address back to x"00” and then press the KEY(1) button once. The logic analyzer will trigger. Note that the
clock of the system is running at 1 kHz. This means that no matter how fast you try to remove your finger from KEY(1),
it will still be slow enough that hundreds of values will be read out of the R/W array due to having addr_EN asserted
while KEY(1) is pressed. You should see a measurement similar to Figure 10.13. Your values will differ depending on
what you stored in the address locations beyond x"03".
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Logic Analyzer Measurement of R/W System — Reading Contents of Array

Take a screenshot of this logic analyzer measurement. Save the image in JPG format with a descriptive file name.
This image satisfies the requirements for deliverable #3.

Save your Analog Discovery workspace in your Quartus project directory so that you can recreate this
measurement in the future if needed. Close Waveforms.
10.2.5.4 Save a Copy of your top.vhd for your Records

Locate the top.vhd file for this exercise. This file satisfies the requirements for deliverable #4.

After you are done, close your Quartus project.

Lab 10.2 After completing this lab exercise, can you:

e Implement a synchronous, 32x8 R/W array?
e Implement an address counter with enable?
Implement a FSM that controls how information is written to, and read from, the R/W

array?
e Observe the R/W system operation using a logic analyzer?
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Lab 11.1: Details of an FPGA

11.1.1 Objective

This objective of this lab is to gain experience with some of the most used reporting and viewing options associated
with modern digital design tools. You will use the Quartus tool to view the resource utilization and maximum frequency
reports for an FPGA design. You will also view the RTL, state machine, and chip planner views of the design.

11.1.2 Learning Outcomes

After completing this lab you should be able to:

o Determine the device utilization of a VHDL design implemented in Quartus.

e Determine the maximum clock frequency of a VHDL design implemented in Quartus.
e View the RTL interpretation of a VHDL design when implemented in Quartus.

e View the state diagram interpretation of a VHDL FSM implemented in Quartus.

e View the chip planner view of a VHDL design implemented in Quartus.

11.1.3 Parts Needed

J None.

11.1.4 Deliverables
The deliverable(s) for this lab are as follows:

1. A screenshot of the device utilization report for a VHDL design in Quartus (20% of exercise).

A screenshot of the maximum clock frequency report for a VHDL design in Quartus (20% of exercise).
A screenshot of the RTL view for a VHDL design in Quartus (20% of exercise).

A screenshot of the state diagram view for a VHDL FSM in Quartus (20% of exercise).

A screenshot of the chip planner view for a VHDL design in Quartus (20% of exercise).

ok wbd

11.1.5 Lab Work & Demonstration

You are going to investigate a variety of reporting and viewing options available in Quartus for a VHDL design
implemented on the Cyclone V FPGA. This can be done completely in Quartus so the DEO-CV board is not needed.

11.1.5.1 View the Device Utilization Report

Create a New Quartus Project by Copying Lab 10.2

Open lab 10.2 in Quartus. Use the Copy Project feature to create the project for this lab. Name the folder and
project “Lab_11p1_FPGAs”. Manually copy the pin_assignments.csv file into your new project directory. While you
will not be changing the pin assignments, it is good design practice to keep a current version of the pin assignments in
your project directory. This project is a good representation of a typical digital system as it contains dedicated
combinational logic (char_decoder.vhd), register transfer logic consisting of both D-flip-flops and combinational logic
(clock_div_prec.vhd & the address counter), a finite state machine (control FSM), and a memory block
(rw_32x8_sync.vhd).

View the Logic Utilization Reports

Quartus produces a variety of utilization reports. These reports become important as your design gets large
enough that you begin reaching the maximum size of an FPGA as they may indicate a larger device is needed.
Additionally, as your design reaches the maximum size for a device, the synthesis step can start taking an excessive
amount of time to converge. This is another indication you should consider a larger device.

165
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There are two general types of utilization reports. The first report is in the Analysis & Synthesis step. In this
step, Quartus has synthesized your VHDL designed and performed the first mapping of logic into its available
resources, however, it has not yet done the final placement and routing of your design into the FPGA. Quartus does
this first step to ensure your design has a chance of fitting within the selected FPGA before going to the next, more
detailed implementation step.

In the task pane of Quartus, expand the Analysis & Synthesis step and double click on View Report. You will see
a “Compilation Report — top” window appear in the main window. On the left side of report window, there is a table of
contents. This table of contents contains all of the reports for the implementation. It can sometimes be difficult to find
what you are looking for in the table of contents. By double clicking on the View Report step in the task pane, it will
automatically bring you to the corresponding location in the table of contents. By default, double clicking on Analysis
& Synthesis = View Report in the task pane will take you to the Analysis & Synthesis Summary report. In the table of
contents, four items down from the summary report is the Resource Usage Summary. Click on this report. You should
see the report in Figure 11.1.
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Analysis & Synthesis - Resource Usage Summary

This report gives a variety of useful information including the number of LUTs and registers needed, the number
of 1/0 pins, and the number of memory bits required. This report does not provide information about what percentage
of resources of your selected FPGA are being consumed. To see the percentage, you need to look at the usage report
after it has been placed and routed.

In the Task pane of Quartus, expand the Fitter (Place & Route) step and double click on View Report. You will
see the Fitter Summary Report in Figure 11.2.
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Figure 11.2
Fitter Summary

This summary shows the number of resources being used by the design on the Cyclone V 5CEBA4F23C7 FPGA.
Notice for this design, the Logic Utilization, Total block memory bits, and Total RAM Blocks usage are all under 1%.
This gives an indication of how vast the resources available are on a modern FPGA.

A more detailed breakdown of the resource utilization can be found in Fitter - Resource Section 2 Resource
Usage Summary. Open this report and get a feel for the level of detail that is provided by Quartus for the resource
usage. While, this level of detail is interesting, usually the fitter summary information will suffice for determining how
close a design is to exceeding a device’s maximum capacity.

Go back to the Fitter Summary and take a screenshot of the report (the window similar to Figure 11.2). Save the
image in JPG format with a descriptive file name. This image satisfies the requirements for deliverable #1.

11.1.5.2 View the Maximum Frequency Report

In synchronous systems, one of the important performance specifications is the clock speed. Quartus provides an
estimate for the maximum clock frequency based on all of the delays in your design and the setup/hold specifications
of its D-flip-flops. In the task pane, expand the TimeQuest Timing Analyzer and double click on the View Report step.
In the main compilation report, expand the TimeQuest Timing Analyzer section to see the available reports.

You will see four models for estimating delay. These four models contain delay for the devices on the FPGA that
consider the process (slow vs. fast) and temperature (85C vs. 0C). The worst case delay for a digital system is always
when the manufacturing process yields the slowest transistors and they are run at the maximum temperature. The
maximum frequency is reported for this case under the Slow 1100mV 85C Model. Expand this model and click on the
Fmax Summary. You'll see the estimated maximum frequency for any clocks in your system. Your report will look like
Figure 11.3.
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Notice that this report gives Fmax for all clocks in the system. In this design, there are two clocks, Clock_50 and
CLK_div (CLK_div is the signal name within clock_div_prec.vhd). Notice that CLK_div can run faster than Clock_50.
This is likely due to the additional path that the Click_50 signal must traverse to enter the FPGA and be routed to the

clock_div_prec.vhd logic.

Take a screenshot of the Fmax summary. Save the image in JPG format with a descriptive file name. This image
satisfies the requirements for deliverable #2.

11.1.5.3 Run the RTL Viewer

The RTL view of your design provides an initial mapping of your post-synthesis logic into resources on the FPGA.
This can be useful to see how Quartus is interpreting your design. In the task pane, expand the Analysis & Synthesis
step. Then expand the Netlist Viewers step and double click on “RTL Viewer”. The RTL viewer will load and then
appear. You should see the screen in Figure 11.4.
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Figure 11.4
RTL View of the Top Level of R/W Memory System

In this view you are able to see the major groupings of logic. Any block with a + can be expanded into in order to
see more details of the design. Expand the char_decoder to see how the combinational logic is mapped by clicking on
the “+” on the “char_decoder:C0” block. You will see the RTL view in Figure 11.5.
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Figure 11.5
RTL View of char_decoder:C0O
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Notice that each bit of the 7x output bits of the char_decoder is driven by a multiplexer. This is showing the lookup
table (LUT) approach used to implement combinational logic on FPGAs. Click the < icon in the upper left corner of
the RTL viewer to go back to the top level.

Now expand the rw_32x8_sync:RW1 block. You will see the RTL view in Figure 11.6.
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Figure 11.6

RTL View of rw_32x8 sync:RW1

The RTL view of the R/W system shows two items of interest. First, the block labeled “RW” is a built in block RAM
(BRAM) within the FPGA. Notice that this block actually has more functionality than our design uses. This includes a
clear (CLR1) and an enable (ENA1). When a VHDL model is created that only uses a subset of the features of a built-
in block within the FPGA, Quartus will automatically wire the unused inputs to logic values so that they don’t impact the
desired functionality. In this case, Quartus wired CLR1=0 and ENA1=1 so they have no effect on our design.

The second item to notice is that to get the rising edge sensitivity for the R/W memory that we designed into our
VHDL model, Quartus needed to attach 8x D-flip-flops to the output of the BRAM. Notice how the FPGA D-flip-flops
also have additional functionality beyond what we typically include in our D-flip-flop model. This includes an enable
(ENA) and a synchronous clear (SCLR). The synchronous clear is different from a reset in that it is only acknowledged
on the rising edge of the clock. The reset on the FPGA is considered a global net, so it is not shown as it is implicitly
connected to all D-flip-flops on the device. Click the € icon in the upper left corner of the RTL viewer to go back to the
top level.

Take a screenshot of the top level RTL view (similar to Figure 11.4). Save the image in JPG format with a
descriptive file name. This image satisfies the requirements for deliverable #3. Close the RTL viewer.

11.1.5.4 Run the State Machine Viewer

Quartus will recognize any finite state machine that are modeled in the design and provide a state diagram view
of their behavior. Back in the task pane of Quartus, expand the Analysis & Synthesis step. Then expand the Netlist
Viewers step and double click on “State Machine Viewer”. The state machine viewer will load and then appear. You
should see the screen in Figure 11.7.
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Figure 11.7
State Machine View of Control FSM

This view shows the state diagram that Quartus produced based on your FSM VHDL model. This is a useful tool
as it allows you to see how Quartus interpreted the behavior you intended to model in VHDL. If the state diagram does
not match your desired behavior, you have an issue in your VHDL that must be fixed. You can also view the encoding
scheme that the synthesizer chose for your FSM states by clicking on the “Encoding” tab.

Take a screenshot of the state machine view. Save the image in JPG format with a descriptive file name. This
image satisfies the requirements for deliverable #4. Close the state machine viewer.

11.1.5.5 Run the Chip Planner Tool

Another useful view of the implementation of a VHDL design is the chip planner. This gives an approximation of
the location on the device that your logic is mapped into. Back in the task pane of Quartus, expand the Fitter (Place
& Route step. Couble click on “Chip Planner”. The chip planner tool will load and then appear. You should see the
window in Figure 11.8.
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Figure 11.8
Chip Planner View of Top Level of R/W Memory System

The chip planner shows all of the available logic resources and memory blocks. The logic resources are grouped
into what Quartus called logic array blocks (LABs). These are the light blue rectangles in the chip planner view. There
are also columns of BRAMs (light red) and dedicated hardware blocks for digital signal processing (light yellow). Each
of these blocks can be selected to view the available resources.

The chip planner will highlight any block that is used by the design. In Figure 11.8 you'll notice there are a handful
of highlighted blocks in the lower right corner of the chip plan. Zoom in on this region using either the zoom icon or by
using the mouse scroll wheel while holding down the CNTL key. As you zoom in, you'll start to see that each block
contains more resources that are also highlighted if used. Zoom in until you see a block that is used and click on it.
The details of the internal resources will show up in the upper right pane of the chip planner window. You should see
a window similar to Figure 11.9.
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Figure 11.9
Chip Planner View of Top Level of R/W Memory System (Zoomed)

Doube click on one of the used LABs. A new window will appear that shows the resources within a LAB. You
should see the window in Figure 11.10.
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Chip Planner Details of Logic Array Block

Within the LAB, you'll notice that the resources used are again highlighted. Take notice of all of the resources
available. Each LAB contains multiple LUTs (labeled FO, F1, etc.), multiple D-flip-flops, and numerous multiplexers to
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handle how the resources are configured. Understanding the FPGA resources at this level can sometimes be exploited
to create more optimized designs.

Take a screenshot of the chip planner view of the LAB (your window similar to Figure 11.10). Save the image in
JPG format with a descriptive file name. This image satisfies the requirements for deliverable #5. Close all of the
chip planner windows. Save your project and close Quartus.

After you are done, close your Quartus project.

Lab 11.1 After completing this lab exercise, can you:

e Determine the device utilization of a VHDL design implemented in Quartus?

e Determine the maximum clock frequency of a VHDL design implemented in Quartus?
e View the RTL interpretation of a VHDL design when implemented in Quartus?

e View the state diagram interpretation of a VHDL FSM implemented in Quartus?

e View the chip planner view of a VHDL design implemented in Quartus?
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Lab 12.1: Unsigned Adders

12.1.1 Objective

This objective of this lab is to give experience implementing adders that are modeled in VHDL. You will create a
4-bit unsigned adder. The inputs for your adder will come from the slider switches on the DEO-CV FPGA board. The
inputs, sum, and carry out will be displayed on the HEX character displays. The inputs and carry will also be displayed
on the red LEDs.

12.1.2 Learning Outcomes
After completing this lab you should be able to:

e Design a 4-bit, unsigned adder using the “+” operator from the numeric_std package.
e Type cast between types unsigned and std_logic_vector.

12.1.3 Parts Needed

e DEO-CV FPGA board.

12.1.4 Deliverables
The deliverable(s) for this lab are as follows:

1. Demonstration of an unsigned adder that displays its inputs, sum, and carry on the displays of the DEO-
CV board (90% of exercise).
2. Provide your top.vhd design file (10% of exercise).

12.1.5 Lab Work & Demonstration

You are going to design a 4-bit, unsigned adder in VHDL. The two 4-bit inputs will come from SW(7:4) and SW(3:0).
The two inputs will be displayed on the HEX2 and HEXO displays through your char_decoder.vhd and also on the red
LEDs. The 4-bit sum will be displayed on HEX4. The carry will be displayed on HEX5 and also on LEDR(9). The
block diagram for the 4-bit unsigned adder system is shown in Figure 12.1.

175



176 « Chapter 12: Arithmetic Circuits
DEO0-CV Board
?ggg’g: 4‘;;:(?7? (top.vhd) (char_decoder.vhd)
SW(3:0 7-Segment |HEXO 7, ]
DEsaHer » r. HEX0
- 1111 HEXL S _>. HEX1
> it bR
SWB) 4 ! Unsigned } 4 SW(74) | 7-Segment |HEX2 7| HEX2
EEE:' SWE) o .t t Adder =43 Sum(3:0) | Decoder 17
SWE4) ' '
LT . I ; 11 HEXS % _>l HEX3
SW(3) : H ' (off)
-] » 4 ' Sum(3: ¥ HEX4 7
SW(2 H um(3:0) 7-Segment Lo
o Sm& o +)E E_> Carry —»| Decoder i ’l HEXE
(=] > H ' .
(5 SWO) leccccccaaa 000" & Carry 7-Segment |HEX5 7,1
>. ' —— Soder s HEX5
SMED) »| LEDR(7:0)
Sy »| LEDR(9)
Figure 12.1

Block Diagram for the 4-Bit Unsigned Adder System

Figure 12.2 shows a picture of the I/O on the DEO-CV board used in this exercise.
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Figure 12.2

SW(7:0) is also
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Picture of the Unsigned Adder System on the DEO-CV Board
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12.1.5.1 Implement the Adder System
Create a New Quartus Project by Copying Lab 11.1

Open lab 11.1 in Quartus. Use the Copy Project feature to create the project for this lab. Name the folder and
project “Lab_12p1_Unsigned_Binary_Adder”. Manually copy the pin_assignments.csv file into your new project
directory. While you will not need to update any pins in this exercise, it is good practice to keep the most up to date
assignment file in your project directory. You can delete all of the VHDL from 11.1 that is not used in this exercise.

Modify the Entity for this Exercise

Alter the entity to match the ports that will be used in this exercise. This will involve eliminating many of the ports
from lab 11.1 . When done, the package and entity portion of your design should look like Figure 12.3. Note that you
will not be using LEDR(8), but it is easier to declare the entire 10-bits of LEDR in one vector. You can simply drive
LEDR(8) with ‘0’ to turn it off in this exercise.

@Text Editor - C:/Users/k91h784/Desktop/Logic_Lab/Lab12p1_... = a x
Eile Edit View Project Processing Iools Window Help me
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@ [ibrary IEEE; "
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6 = port (sw : in std_logic_vector(7 downto 0);
7 LEDR| : out std_logic_vector(9 downto 0);
8 HEXO . out std_logic_vector(6 downto 0);
9 HEX1 : out std_logic_vector(6 downto 0);
10 HEX2 : out std_logic_vector(6 downtc 0);
11 HEX3 : out std_logic_vector(6 downto 0);
12 HEX4 : out std_logic_vector(6 downto 0);
13 HEX5 : out std_logic_vector(6 downtc 0));
14 |end entity;
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< >
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Figure 12.3

Entity for the Unsigned Adder System

Create the Unsigned Adder Logic

In your top.vhd, design the logic for the unsigned adder. You can create the adder logic using either a process or
a sequential signal assignment.

Hint 1: Use the “+” operator from the numeric_std package to perform the addition. Be aware the “+” operation is
only supported for types unsigned and signed in this package. This means you'll need to create internal vectors of type
unsigned to implement the inputs and output of your adder. You can first type cast your inputs SW(7:4) and SW(3:0)
into your new unsigned vectors. You can then perform the addition with a resulting sum and carry that are of type
unsigned. You'll then need to type cast back the sum from unsigned to std_logic_vector to drive the HEX displays.

Hint 2: The carry bit can be created as simply the 5™ bit in an addition; however, the size of the inputs and output
need to be the same width for the “+” operator. If you concatenate the 4-bit inputs with a ‘0’, they will become 5-bits
wide and their values won't change (this only works for unsigned numbers). If you declare your internal, unsigned
signal for the sum to also be 5-bits, the addition can be performed directly with the “+” operator. The 5-bit sum can
then be used to drive the HEX displays. You will drive the lower 4-bits (i.e., the 4-bit sum) to HEX4 and the 5™ bit (i.e.,
the carry) to HEX5 through your char_decoder.vhd components. The carry will need to be concatenated with “000” to
make it match the input requirements of your char_decoder.vhd.
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Compile your Design

Compile your design and fix any errors that you encounter. Note that you don’t need to alter any pin assignments
since you are using a subset of the entity from lab 11.1. Although it is always a good idea to verify the assignments in
pin planner.

Download and Test Your Design

Open the programmer tool and download your design to the FPGA. You should now see the inputs on HEX0 and
HEX2 in addition to the red LEDs. You should see the sum and carry on HEX4 and HEX5. The carry should also be
displayed on LEDR(9). Cycle through the majority of input codes on the slider switches and ensure that the adder is
producing the correct result.

Take a short video (<5 s) showing the proper operation of your design. You should show a 2-3 additions with at
least one asserting the carry bit. This video satisfies the requirements for deliverable #1.

12.1.5.2 Save a Copy of your top.vhd for your Records
Locate the top.vhd file for this exercise. This file satisfies the requirements for deliverable #2.

After you are done, close your Quartus project.

Lab 12.1 After completing this lab exercise, can you:

e Design a 4-bit, unsigned adder using the “+” operator from the numeric_std package?
e Type cast between types unsigned and std_logic_vector?
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Lab 12.2: Signed Adders

12.2.1 Objective

This objective of this lab is to give more experience implementing adders that are modeled in VHDL. You will
create a 4-bit signed adder. The inputs for your adder will come from the slider switches on the DEO-CV FPGA board.
The inputs and sum will be displayed on the HEX character displays. This will require creating a new decoder that will
drive two HEX displays for each 4-bit input, one for the sign of the number and one for the magnitude
(twos_comp_decoder.vhd). The inputs will also be displayed on the red LEDs. You will also display whether twao’s
complement overflow occurred by asserting LEDR(9).

12.2.2 Learning Outcomes
After completing this lab you should be able to:

e Design a 4-bit, signed adder using the “+” operator from the numeric_std package.

e Type cast between types signed and std_logic_vector.

e Create a decoder to display the decimal value of a 4-bit signed number on two character displays.
e Create the logic to determine if two’s complement overflow occurred.

12.2.3 Parts Needed

e DEO-CV FPGA board.

12.2.4 Deliverables
The deliverable(s) for this lab are as follows:

1. Demonstration of a signed adder that displays its inputs and sum on the displays of the DEO-CV board
and also indicates whether two’s complement overflow occurred by asserting LEDR(9) (90% of
exercise).

2. Provide your top.vhd design file (10% of exercise).

12.2.5 Lab Work & Demonstration

You are going to design a 4-bit, signed adder in VHDL. The two 4-bit inputs will come from SW(7:4) and SW(3:0)
and will be displayed on the red LEDs. The inputs and sum will be displayed on the HEX displays on the DEO-CV board.
Since these 4-bit values are two’'s complement codes, they contain negative numbers. In order to display a negative
number using decimal symbols, two HEX displays are required, one for the sign and one for the magnitude. You will
need to create a new decoder (twos_comp_decoder.vhd) that will take in a 4-bit two’s complement code and drive two
HEX displays with the corresponding decimal symbols. You are also going to create the logic to determine whether
two’s complement overflow occurred. If it has, you will assert LEDR(9). The block diagram for the 4-bit signed adder
system is shown in Figure 12.4.
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Block Diagram for the 4-Bit Signed Adder System
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Figure 12.5 shows a picture of the I/O on the DEO-CV board used in this exercise.
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Picture of the Signed Adder System on the DEO-CV Board
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12.2.5.1 Implement the Adder System
Create a New Quartus Project by Copying Lab 12.1

Open lab 12.1 in Quartus. Use the Copy Project feature to create the project for this lab. Name the folder and
project “Lab_12p2_Signed_Binary_Adder”. Manually copy the pin_assignments.csv file into your new project directory.
While you will not need to update any pins in this exercise, it is good practice to keep the most up to date assignment
file in your project directory.

Create the Signed Adder Logic

In your top.vhd, design the logic for the signed adder. You can create the adder logic using either a process or a
sequential signal assignment.

Hint: Use the “+” operator from the numeric_std package to perform the addition. Be aware the “+” operation is
only supported for types unsigned and signed n this package. This means you'll need to create internal vectors of type
signed to implement the inputs and output of your adder. You can first type cast your inputs SW(7:4) and SW(3:0) into
your new signed vectors. You can then perform the addition with a resulting sum that are of type signed. You'll then
need to type cast back the sum from signed to std_logic_vector to drive the HEX displays. Note that when performing
an addition using two’s complement number, the carry is ignored. This means the inputs and sum can both be 4-bits
and the carry is non-existent.

Create the Two’s Complement Decoder Sub-System

You are going to create a model for a two’s complement character decoder. This will require creating a new VHDL
file in Quartus. Your file should be called “twos_comp_decoder.vhd”. The system will have a 4-bit input called
TWOS_COMP_IN, which will be a two’'s complement number. The system will have two, 7-bit outputs called
MAG_OUT and SIGN_OUT, which will drive two HEX displays on the DEO-CV board. The port and entity definition are
given in Figure 12.6.

twos_comp_decoder.vhd
4 7 entity twos comp decoder is
%] TWOS_COMP_IN MAG_OUT = port (TWOS COMP IN : in std logic_vector (3 downto 0) ;
7 MAG OUT : out std_logic_vector (6 downto 0);
SIGN_OUT o= SIGN_OUT : out std logic wvector (6 downto 0));
end entity;
Figure 12.6

Port and Entity Definition for Two’s Complement Character Decoder

Recall that the operation for adding signed numbers is identical to adding unsigned numbers. The only exception
is that the carry bit is ignored. The main difference when using two’'s complement numbers is how we interpret and
display them. When the number is displayed on a character display, it takes two displays, one for the sign and one for
the magnitude. For the 4-bit code in this exercise, the decimal symbols to be displayed are {-8, -7, -6, -5, -4, -3, -2, -1,
0,1, 2, 3, 4,5 6, 7}. This type of decoder can be created in a similar manner to your unsigned decoder
char_decoder.vhd. The difference is that the output will drive two, 7-bit ports and the values sent to displays will need
to reflect the decimal symbols corresponding to the 4-bit input. Create the logic for this decoder. Save your file.

Back in your top.vhd, declare the twos_comp_decoder.vhd component. Instantiate it three times. The three inputs
to the decoders will be SW(3:0), SW(7:0), and your internal sum. The outputs will be the six HEX displays. The details
of the signal connections are given in Figure 12.4.

Create the Logic to Determine if Two’s Complement Overflow has Occurred

In your top.vhd, you need to create logic to determine if the sum resulted in two’s complement overflow. Two’s
complement overflow refers to when the result of an operation falls outside of the range of numbers that can be
represented using the number of bits in the output. For a 4-bit code, this means any result that is <(-8) or >(+7). Recall
that the conditions to detect overflow when adding two’s complement overflow are either:
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e The sum of two positive numbers yields a negative number.
e The sum of two negative numbers yields a positive number.

These two conditions can be monitored by observing the MSB of the inputs and output of the sum since the MSB
is always the sign bit for a two’s complement code. If overflow occurs, you will assert LEDR(9). This logic can be
implemented using a process and an if/then construct.

Compile your Design

Compile your design and fix any errors that you encounter. Note that you don’t need to alter any pin assignments
since you are using a subset of the entity from lab 12.1. Although it is always a good idea to verify the assignments in
pin planner.

Download and Test Your Design

Open the programmer tool and download your design to the FPGA. You should now see the inputs on HEX3,
HEX2, HEX1, and HEXO. You should see the sum on HEX5 and HEX4. The inputs and output should display the
decimal values including the negative sign when appropriate. The inputs should also be displayed on the red LEDs
and overflow should be indicated on LEDR(9).

Cycle through the majority of input codes on the slider switches and ensure that the adder is producing the correct
result. When testing the overflow condition, you will want to provide two inputs that result in a sum that is outside of
the range possible for a 4-bit two’s complement code. Examples of these are:

e 7+7=14. Overflow has occurred because 14 can't be represented with a 4-bit two’s complement code.
e (-8)+(-8)=(-16). Overflow has occurred because 14 can’t be represented with a 4-bit two’s complement
code.

Take a short video (<5 s) showing the proper operation of your design. You should show conditions that have both
positive and negative numbers on the inputs and output and conditions that show no overflow and with overflow. This
video satisfies the requirements for deliverable #1.

12.2.5.2 Save a Copy of your top.vhd for your Records
Locate the top.vhd file for this exercise. This file satisfies the requirements for deliverable #2.

After you are done, close your Quartus project.

Lab 12.2 After completing this lab exercise, can you:

e Design a 4-bit, signed adder using the “+” operator from the numeric_std package?

e Type cast between types signed and std_logic_vector?

e Create a decoder to display the decimal value for a 4-bit signed number on two
character displays?

e Create the logic to determine if two’s complement overflow occurred?
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Lab 13.1: 8-Bit Computer Implementation

13.1.1 Objective

The objective of this lab is to gain experience implementing computer systems. You will design and implement a
fully functional, 8-bit, computer system. The computer will be designed incrementally to verify that smaller portions of
the computer are verified before moving onto the next step in the design. Ultimately, the computer will be implemented
on the DEO-CV board.

13.1.2 Learning Outcomes
After completing this lab you should be able to:

e Design a VHDL model for an 8-bit computer system.

e Perform functional simulations to verify the proper execution of instructions by observing simulation
waveforms.

¢ Implement the computer on an FPGA and verify the proper execution of instructions by observing
signals on the various 1/O of the DEO-CV board.

13.1.3 Parts Needed

e DEO-CV FPGA Board.

13.1.4 Deliverables
The deliverable(s) for this lab are as follows:

1. “VHDL Shell” - Provide the 8x VHDL design files that represent the structural shell for the
microcomputer and a screenshot of your simulation transcript verifying that there are no broken
connections (10% of exercise).

2. “Functional Simulation of the Four Basic Instructions” - Provide simulation waveforms that verify the
proper execution of the LDA_IMM, LDA_DIR, STA_DIR, and BRA instructions (40% of exercise).

3. ‘“Implementation of Basic Instructions on the FPGA” — Demonstration of the proper operation of the
LDA _DIR, STA_DIR, and BRA instruction on the DEO-CV Board (20% of exercise).

4. “Additional Instruction Implementation” — Provide simulation waveforms and demonstration of
implementation on the DEO-CV board of additional instructions you wish to include in your computer
(30% of exercise).

13.1.5 Lab Work & Demonstration
13.1.5.1 VHDL Shell

In this part, you are going to create the VHDL shell for the computer system. This entails creating all of the VHDL
files for the system, creating all of the entities, and connecting each sub-system within the hierarchy. You will then run
a ModelSim simulation to load the design and verify that all connections are correct. If any of the connections are
incorrect (i.e., port map naming mismatch), the simulation will fail when loading. A test bench is provided for this
simulation (computer_TB.vhd). In this part of the exercise, you won't be viewing any simulation waveforms, you'll just
be verifying that the simulation loaded correctly by observing messages in the transcript window. The structure for the
computer.vhd, cpu.vhd, and memory.vhd are given in Figure 13.1, Figure 13.2, and Figure 13.3 respectively.
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Example: Top Level Block Diagram for the 8-Bit Computer System

The following is the top level block diagram for our 8-bit computer system example.

computer.vhd

cpu.vhd memory.vhd
8
address address
write write
to_memory S data_in
from_memory & data_out
clock
reset
8
port_in_00 —* port_in_00 port_out_00 <)
8
port_in_01 =% port_in_01 port_out_01 <)
A 8
port_in_02 —£ port_in_02 port_out_02 AP
2 8
port_in_03 —* port_in_03 port_out_03 <)
8 8
port_in_04 —*~ port_in_04 port_out_04 /8 »
8
port_in_05 —#~ port_in_05 port_out_05 <)
g 8
port_in_06 —*~ port_in_06 port_out_06 <)
8 8
port_in_07 —* port_in_07 port_out_07 )
8 8
port_in_08 —*~ port_in_08 port_out_08 )
8
port_in_09 -~ port_in_09 port_out_09 /:8 ¥
8 8
port_in_10 —~ port_in_10 port_out_10 <)
g 8
port_in_11 —£ port_in_11 port_out_11 <)
i 8
port_in_12 —* port_in_12 port_out 12 )
8 8
port_in_13 =% port_in_13 port_out_13 )
8 8
port_in_14 —£ port_in_14 port_out_14 P
port_in_15 /E port_in_15 port_out_15 /13 I
clock —H clock
reset
reset ——p
Figure 13.1

Structure of computer.vhd

port_out_00
port_out_01
port_out_02
port_out_03
port_out_04
port_out_05
port_out_06
port_out_07
port_out_08
port_out_09
port_out 10
port_out_11
port_out 12
port_out_13
port_out_14
port_out_15
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Example: CPU Block Diagram for the 8-Bit Computer System
The following is the block diagram for the CPU of our 8-bit computer system example.

cpu.vhd control_unit.vhd data_path.vhd
(FSM) BUS2 BUS1
AAL JAI
8
+... 8
IR_Load fe-sssefesees - I > IR Ca
IR |----}----- 1 S :
8 address
+h 8
MAR_Load f--=---{------ | S MAR :
>
PC_Load feeeeefern-n- I > PC b2
PC_Inc fee=sscpese=s | il >
8 - |00
i » 8
A o1 |2
A_Load p--=---]------ ] > |10
8 . A
B_Load frersrefereen- El-..... > B -
aluvhd _ Y g
3 A \/ B
ALU_Sel fr=sesefee==-- S ST ALU
ALU
NZVC Result
A4 8
CCR_Result ¢ -
_Result | g---}------ I DO !
4 CCR ;
CCR_Load p--eeceferenes T | :
00}
01}y
10|
‘V'z ‘ ‘VP
Bus2 Sel [BEEL.........£...0 g
Bus1_Sel [REESE-------=~"==*""~" e 5
—»=| clock —»=| clock
—(] reset —(] reset
clock — write
reset —p
Y 1°® 1:8
write from_memory to_memory
Figure 13.2

Structure of cpu.vhd
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Example: Memory System Block Diagram for the 8-Bit Computer System
The following is the block diagram for the memory system of our 8-bit computer system

example. memory.vhd
rom_128x8_sync.vhd
address //B> address data out
— clock
rw_96x8_sync.vhd
8 address data_out
data_in ——p data_in
write b write
—i clock .
(16x, 8-bit
16 Output Ports output ports)
e e e ! 16x8
; address port_out_xx — —~—p port_out_xx
+ “data_in" '
&——— write :
—iclock ;
(16x, 8-bit - 5
input ports) —G: (processes) :
exg | | 00000 TTTTTTTTTTTTsossssssssssssscsess
port_in_xx —~£—pt
| 16 Input Ports
data_out 4718—
clock ——)
reset ——)
Figure 13.3

Structure of memory.vhd

Create the VHDL Shell for the Computer in ModelSim

Launch ModelSim and create a new project for the computer system. Design the structural shell of the computer
system based on the above block diagrams. You will need to create 8x VHDL files named as follows:

computer.vhd
L cpu.vhd
L control_unit.vhd
L data_path.vhd
L alu.vhd
L memory.vhd
L rom_128x8_sync.vhd
L rw_96x8_sync.vhd

In each of these files, you should enter the libraries, entity, and the architectural shell. Within the architecture shell,
you should include all of your component declarations, associated signal declarations, a begin statement, and all
component instantiations. Compile all the files and fix any errors you encounter.

Run a ModelSim Simulation to Verify the VHDL Shell Structure

Recall that all that is needed for a VHDL model to compile and simulate is the correct syntax for the entity and
architectural shell. This means you can verify the entities, internal signal declarations, and component instantiations
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before any behavioral modeling is inserted in the architecture. Compiling your models will reveal any syntax errors in
your structure. Running a simulation will load all of your files and check that each component call has the appropriate
port mappings. The simulation will not have any waveform outputs, but it will verify there are no port mismatches in
your structure. This will allow you to get all of your connections correct before moving onto the behavioral modeling of
the computer. The simulation will only run if all of the component port mappings are correct. Once the simulation runs
successfully, you will get a message in the transcript window similar to Figure 13.4. You will get a series of warnings,
but that is OK for now. If there is a port mapping mismatch, you will get an error loading the design and text describing
where the mismatch is.

=S LIS \.-u-}ul-t‘_vl—l-.a IT9T I-_JI:

add wave sim:/computer_tb/*

VSIM 10> run

# ** Note: 8-Bit Microcomputer System Teat Bench Initiating...

# Time: 0 ps Iteration: 0 Instance: /computer_tb

VSIM 11>

Opsto 105us Project : Project |Now: 100 us Delta: 2 sim: fcomputer_tb
Figure 13.4

Transcript Window for Computer System showing Successful Load

Run the simulation on your VHDL shell using the computer_TB.vhd test bench provided. Fix any errors you
encounter. Take a screenshot of your transcript window indicating that the simulation loaded successfully (just like
Figure 13.4). Save the screenshot in JPG format with a descriptive name. This screenshot image and your eight
VHDL files created in this part satisfy the requirements for deliverable #1.

13.1.5.2 Functional Simulation of the Four Basic Instructions

In this part, you are going to design and simulate the behavior of the computer to execute the four basic instructions
LDA_IMM, LDA_DIR, STA_DIR, and BRA. This will involve completing the memory system and the data path, and
implementing the control unit FSM paths for these four instructions. You should refer to section 13.3 in the textbook
for details on this implementation.

Modeling the Memory System

The first model to create is the memory system. This will involve creating the behavior for the ROM and R/W sub-
systems. It will also involve creating the 16 processes for the output ports. Finally, you'll need to model all of the signal
routing within memory.vhd to handle the input ports and data_out port. When modeling this system, use the map in
Figure 13.5 for the address locations of the various memory types. After creating the model for the memory system,
you will insert test programs into the program memory section of your system to execute the instructions. You will use
the programs provided in exercise problems 13.3.1 and 13.3.2 from the textbook.
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Example: Memory Map for a 256x8 Memory System
The following is a memory map for an example 8-bit computer system.

Address
X"OO"
Program
Memory
1 (128 bytes of ROM)
x!!?FI!
XHSOFI
Data
Memory
¥ (96 bytes of RW)
x!l D Fll
x“EOII
l IO (outputs)
(16 Ports)
X‘!EFII
x!!FOI! .
l 10 (inputs)
(16 Ports)
X“F Fll

le— 8-bits —»

Figure 13.5
Memory Map for the 8-Bit Computer System

Modeling the Data Path

The next sub-system to model is the data path shown in Figure 13.2. This sub-system is modeled using processes
for each register and processes for the two multiplexers. You do not need to model any ALU or CCR functionality in
this part of the exercise. You will do that later once you add arithmetic instructions.

Modeling the Control Unit: LDA IMM Instruction

You are now going to implement the behavior to execute the load register A using immediate addressing
(LDA_IMM) instruction. The state diagram for the control unit functionality for LDA_IMM is given in Figure 13.6. After
the model is complete, you can run a full computer simulation to verify the execution of this instruction. You should use
the program provided in exercise problem 13.3.1 of the textbook, which continually loads constants into register A and
then stores them to output ports. Since the first instruction in this program is LDA_IMM, you can run this program with
only this instruction complete. The computer will hang after the first instruction, but you'll be able to verify that LDA_IMM
is working properly. Your simulation waveforms should look like Figure 13.7.
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S_FETCH_O
Bus1_Sel = PC
Bus2_Sel = Bus1
MAR_Load

S_FETCH_2
Bus2_Sel=from_memory
IR_Load

S_LDA_IMM_4

Bus1_Sel = PC

Bus2_Sel = Bus1
MAR_Load

S_LDA_IMM_6
Bus2_Sel=from_memory
A_Load

Figure 13.6

Example: State Diagram for LDA_IMM

The following is the state diagram for LDA_IMM. This load instruction will move
information from memory into register A. Immediate addressing implies that the
information to be put into A is provided as the operand of the instruction.

This state will place the PC value into the MAR in order to
provide the address for the opcode. MAR will be updated with
PC in the next state.

MAR is now holding the address of the opcode. It will take 1
clock cycle for the memory to provide the opcode after
receiving the address. While waiting, the PC can be
incremented to the next address in the program memory.

The opcode that has been read from memory is now available
on Bus2 and can be latched into IR by asserting IR_Load. IR
will be updated with the opcode in the next state.

The opcode now resides in IR and is decoded to determine
which instruction is being executed.

to other instructions....

If (IR=LDA_IMM)

“Load A Immediate” means that the operand of the instruction
is the information to be loaded into A. PC is already pointing
to this location in memory so we can put it out on MAR. MAR
will be updated with PC in the next state.

MAR is now holding the address of the operand. It will take 1
clock cycle for the memory to provide the operand after
receiving the address. While waiting, the PC can be
incremented to the next address in the program memory.

The operand that has been read from memory is now
available on Bus2 and can be latched into A by asserting
A_Load. Register A will be loaded with the operand in the
next state (e.g., S_FETCH_D0).

We are done executing this instruction so we can return to the
beginning and fetch the opcode of the next instruction. Notice that the
PC is already pointing to the next address in program memory.

State Diagram for the LDA_IMM Instruction
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Example: Simulation Waveform for LDA_IMM

Let’s look at the timing diagram when executing the following load instruction located at
addresses x"00" and x"01" in program memory. The opcode for this instruction is x"86".

LDA_IMM x"AA”

S_FETCH_0 puts PC into MAR
to provide the address of the
opcode. MAR is updated on the
next clock edge.

S_LDA_IMM_4 puts PC into
MAR to provide the address of
the operand. MAR is updated

on the next clock edge.

In S_FETCH_2, the opcode is
available from memory. We route it
to Bus2 and assert IR_Load. IR will
be updated on the next clock edge.

In S_LDA_IMM_8, the operand is
available from memory. We route it
to Bus2 and assert A_Load. A will
be updated on the next clock edge.

D [ an|
# clock o | [ 1 I | 1 [ | J | J L
= Control Unit —
+ current_state .. [B_FETCH 0 15_FETCH_1 5_FETCH |2 |s_DECODE_3 s LpAJIMM_4 5 LDA_IMM_5 S LDAJIMM 6 |S_FETCH 0
— Instruction Register — \‘}
# IR_Load 1 T % 1 1
¢ IR 20 39 1 1 ] o T [ M I 1 ] ] 1
~ Memoary Address Register —
# MAR_Load a b | T J b
+ % MAR 00 09 0o I o1
~ Program Countar —
# PC_Load o | / I /
#PC_Ine o Z ] ~al v o Z_T ~ I !
4 PC 01 ) o1 / (T} ) o2
— General Purpose Registers —— I
* A_Load o s 1
A 00 00 I (aa )]
# B_Load o I A
“#+B 00 00 I rd
— Bus System —1 ! Z
+# from_memory 86 00 (¢33 )] (an ]
=4 to_memory 01 oo o1 oz
=& Busl_Sel 00 00 L
+# Bus2_Sel 10 oo T10 loo J Too l10 Jox
+ % Busl 01 ] J
+ Bus2 86 )] Jloo oo Yoz
+ write o
- P =4
2 out_00_TB 00 00
- Nowins ' ‘7a0ns 76dns " 780ns  goos 820ns ‘sagns 860 ns ‘ed0.ns
S 1 5 T —ta 1 = ]
InS_FETCH_1, the PC is incremented In S_LDA_IMM_5, the PC is incremented
while waiting for the memory to produce while waiting for the memory to produce
the opcode. PC takes on its new value the operand. PC takes on its new value
on the next edge of clock. on the next edge of clock.

Figure 13.7

S _DECODE_3 decodes the opcode and
knows that this is a “load A with immediate
addressing” and that the operand is the
data to be loaded into A.

Simulation Waveforms for the LDA_IMM Instruction

Modeling the Control Unit: LDA DIR Instruction

You are now going to implement the behavior to execute the load register A using direct addressing (LDA_DIR)
instruction. The state diagram for the control unit functionality for LDA_DIR is given in Figure 13.8. After the model is
complete, you can run a full computer simulation to verify the execution of this instruction. You should use the program
provided in exercise problem 13.3.2 from the textbook, which continually loads values from input port 1 and stores them
to output port 1. Since the first instruction in this program is LDA_DIR, you can run this program with only this instruction
complete. The computer will hang after the first instruction, but you'll be able to verify that LDA_DIR is working properly.

Your simulation waveforms should look like Figure 13.9.

Register A has been loaded
with the operand and the
instruction is now complete.
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_’\

+

Bus1_Sel =PC
Bus2_Sel = Bus1
If (IR=LDA_IMM) MAR_Load

Example: State Diagram LDA_DIR

The following is the state diagram for LDA_DIR. This load instruction will move information
from memory into register A. Direct addressing implies that the information to be put into A
is located at the address provided as the operand of the instruction.

_~"8S_FETCH_0 ™

Bus1_Sel = PC
Bus2_Sel = Bus1
. MAR_Load -~

"

_~S_FETCH_1 ™\
PC_Inc !

\ ' /__.

_~S_FETCH_2 ™
( Bus2_Sel=from_memory
AN IR_Load J

_~S_DECODE_ 3™

J

~

S LDA DIR 4

S _LDA_DIR_5
PC_Inc

S _LDA DIR 6

Bus2_Sel=from_memory
MAR_Load

S LDA DIR 7

S_LDA DIR_8

Bus2_Sel=from_memory
A_Load

Figure 13.8
State Diagram for

the LDA_DIR Instruction

The same fetch/decode states are
executed on every instruction.

#——"\_ If(IR=LDA DIR) to other instructions....

“Load A Direct” means that the operand of the
instruction is the address of the contents to be put into
A. PCis already pointing to this location in memory so
we can put it out on MAR.

It will take 1 clock cycle for the memory to provide the
operand after receiving the address. While waiting, the
PC can be incremented to the next address in the
program memory.

The operand that has been read from memory is now
available on Bus2. We put this value into MAR by
asserting MAR_Load.

It will take 1 clock cycle for the memory to provide the
contents at the address on MAR. This state simply
gives the memory system time to respond.

Now MAR is driving the correct address. We put the
contents arriving on from_memory onto Bus2 and then
latch the value into A by asserting A_Load. Register A
will be updated in the next state (e.g., S_FETCH_0).
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to this instruction.

Example: Simulation Waveform for LDA_DIR

LDA_DIR x"80"

Let’s look at the timing diagram when executing the following load instruction located at
addresses x"08" and x"09" in program memory. The opcode for this instruction is x"87".
The address x"80" is in data memory, which in this example is already holding x”AA” prior

available from memory. We route it
to Bus2 and assert IR_Load. IR will
be updated on the next clock edge.

In S_FETCH_2, the opcode is

In S_LDA_DIR_8, the operand is
available from memory. We route it
to Bus2 and assert MAR_Load to
put it on the address bus.

S_FETCH_O0 puts PC into MAR S_LDA_DIR_4 puts PC into :
to provide the address of the MAR to provide the address of Stﬁléom)z_n?cluR_z ::; I:f Igr
opcode. MAR is updated on the the operand. MAR is updated resri:ng
next clock edge. on the next clock edge. Y
(& = f
# clack e e T T L e e L 7 1]
~— Control Uni —
+ current, mt te w [SFETCH[0 S FETCH 1 IS FETC /5 DECODE_3 S _LDA _DIR|4 7 FETCH
e —4 AN
=¥ IR 97 97 87
— Memory Address Register |——
+ MAR_Load 1 [ 7 b 1 [
=4 MAR 02 81 Jos / Jos 80 ]
Program Counter 1
:::;,o:d : / o 4 ! f o f
2o pC 0302 )] ) I [(T) )] *Toa /
— General Purpose Registers— l /
* A_Load o
A % 5 = —— I %M_T
# B_Load 0 / J - |
4B AA BB 'l' j{ //'
;:';nsu:f::mq 97 [AA 81 % Y (&0 pIT (an )
=% to_memory 03 08 A
=% Busl_Sel 00 00 L 1 1] J [ L i b I L
-\: Bus2_Sel 01 }E 10 loo % ‘@ ELD loo [10 Jo1
=% Busl o3
<% Bus2 naé‘ Jic E ica Jca & Jics () )loa
+ write o
et J
=% port_in_00 CC CC -
=4 port_out_00 00 00 T i T 1 T 1
) T ™ P ™ s e e e
e Cursor 1 "ns |

InS_FETCH_1, the PC is incremented

while waiting for the memory to produce

the opcode. PC takes on its new value
on the next edge of clock.

In S_LDA_DIR_5, the PC is incremented
while waiting for the memory to produce the
operand. PC takes on its new value on the

next edge of clock.

addressing” and that the operand is the
address of the contents to be loaded into A.

S _DECODE_3 decodes the opcode and
knows that this is a “load A with direct

In S_LDA_DIR_8, the contents of
memory are available. We route it to

Bus 2 and assert A_Load. A will be
updated on the next clock edge.

Figure 13.9

Simulation Waveforms for the LDA_DIR Instruction

Modeling the Control Unit: STA DIR Instruction

You are now going to implement the behavior to execute the store register A using direct addressing (STA_DIR)
instruction. The state diagram for the control unit functionality for STA_DIR is given in Figure 13.10. After the model
is complete, you can run a full computer simulation to verify the execution of this instruction. You should use the
program provided in exercise problem 13.3.1, which continually loads constants into register A and then stores them
to output ports. Since you have already implemented LDA_IMM, you'll be able to run the program far enough to test
STA_DIR. Again, the computer will hang after the STA_DIR instruction, but you'll be able to verify that STA_DIR is

waorking properly. Your simulation waveforms should look like Figure 13.11.
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Example: State Diagram for STA_DIR

The following is the state diagram for STA_DIR. This store instruction will move
information from register A into memory. Direct addressing implies that the operand
provides the address of where to store A to.

~"§_FETCH_0 ™\

’ Bus1_Sel = PC

Bus2_Sel = Bus1
“~.__ MAR_Load -~

!

) ~7S_FETCH_1 ™
i PC_Inc !

\ ) /'_.

" S_FETCH_2 ™
[ Bus2_Sel=from_memory |
\. IR_Load f

The same fetch/decode states are
>‘ executed on every instruction.

./.

_~S_DECODE_ 3™

| =t
',“‘..... ) .;'"-' = \ to other instructions. ...
P If (R=STA_DIR)
P v
¢If (IR=LDA_DIR)
If (IR=LDA_IMM) S STA DR 4 “Store A Direct” means that the operand of the

instruction is the address of where to write the
contents of A to. PC is already pointing to this
location in memory so we can put it out on MAR.

Bus1_Sel = PC
Bus2_Sel = Bus1
MAR_Load

It will take 1 clock cycle for the memory to provide the
operand after receiving the address. While waiting,
the PC can be incremented to the next address in the
program memory.

The operand that has been read from memory is now
available on Bus2. We put the address into MAR by
asserting MAR_Load.

S _STA DIR 6

Bus2_Sel=from_memory
MAR_Load

Now MAR is driving the correct address. We need to
write A to memory so we put A on Bus1, which is
directly connected to the to_memory port, and assert
the write signal. This puts the contents of A into the
address provided by the operand.

S _STA_DIR_7
Bus1_Sel=A
Write

Figure 13.10
State Diagram for the STA_DIR Instruction
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Example: Simulation Waveform for STA_DIR

Let’s look at the timing diagram when executing the following store instruction located at
addresses x"04" and x"05" in program memory. The opcode for this instruction is x"96".
The address x”EQ" is for port_out_00. A already contains x"CC”.

S_FETCH_0 puts PC into MAR
to provide the address of the
opcode. MAR is updated on the
next clock edge.

STA_DIR x"EOQ”

S_STA_DIR_4 puts PC into
MAR to provide the address of
the operand. MAR is updated

on the next clock edge.

Address x"EQ" has
been updated with
the contents of A.

In S _FETCH_2, the opcode is In S_STA_DIR_8, the operand is
available from memory. We route it available from memory. We route it
to Bus2 and assert IR_Load. IR will to Bus2 and assert MAR_Load to
be updated on the next clock edge. put it on the address bus.
& =
# clock o | I 1 I [ I 1 T 1 I 1 ] 1 f 1 ]|
— Control Unit —
# current_state .. [5_FETCH]o [5_FETCH_1 Is_FETCH|2 EDECODE 3 S STA|DIR 4 S STADIR 5 5 STA[DIR 6 |s STA DIR 7 |5 FETCH[O |
= Instruction Register ——
+ IR_Load 0 [ L
+ 1R 20 87 ls6
— Memory Address Register |——
+ MAR_Load 1 3 T | [ ] n
=% MAR o7 Fo loa I los [E0
o el Vd / / 7
+ PC_Inc 0 LA i L 7 ) 1 F A =gl 7
s4PC 00 (o4 _ I [l S / | - . T ) T /
— General Purpose Registers ——
+ A_Load o |
L 4
0:_Load ncc [ / 1 /
S4B 00 00 I I
— Bus System — L g L)
+# from_memory 00 CC [Fo [§:13 ) [{ )]
+ 4 to_memory 00 04 05 % J los
+% Bus1_Sel 00 00 | Joo
+ Bus2_Sel 01 loo 10 loo [io 1 Jo1
=4 Busl 0o ({04 I 05 b [ % ) Ios
% Bus2 00 )loo (es Jloo Jlse tg ) \__l06
# write 0 i [ \ |
s = |
+# port_in_00 cC cC ford
“ % port_out_00 cC 00 i
.‘_.J Mli T . Jml}“ . szn ';‘ ....... J:‘én‘ ...... “n.'.“ ....... Jﬁ r;‘ ....... W '.“ ....... dﬁﬂ‘ “6'.“ ....... 4.sq.';‘.'
In S_FETCH_1, the PC is incremented In S_STA_DIR_5, the PC is incremented
while waiting for the memory to produce while waiting for the memory to produce
the opcode. PC takes on its new value the operand. PC takes on its new value
on the next edge of clock. on the next edge of clock.

Figure 13.11

S_DECODE_3 decodes the opcode and
knows that this is a “store A with direct
addressing” and that the operand is the

address to write A to.

In S_STA_DIR_7, A is put onto Bus1,
which drives to_memory, and write is
asserted. The contents of A show up at
address x"EQ" on the next clock edge.

Simulation Waveforms for the STA_DIR Instruction

Modeling the Control Unit: BRA Instruction

You are now going to implement the behavior to execute the branch always (BRA) instruction. The state diagram
for the control unit functionality for BRA is given in Figure 13.12. After the model is complete, you can run a full computer
simulation to verify the execution of this instruction. You should use the program provided in exercise problem 13.3.1,
which continually loads constants into register A and then stores them to output ports.
implemented LDA_IMM and STA_DIR, you'll be able to run the program far enough to test BRA. Once complete, this

program should run indefinitely in a loop. Your simulation waveforms should look like Figure 13.13.

Since you have already
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Example: State Diagram for BRA

The following is the state diagram for BRA. This instruction will load the program counter
with the address supplied by the operand of the instruction. This has the effect of setting
the address of the next instruction to be executed to a new location in program memory.

_’J\

" S_FETCH_0 ™
Bus1_Sel = PC
Bus2 Sel = Bus1
. MAR Load -~
[ PC_Inc !
e The same fetch/decode states are executed on
T Jv >‘ every instruction.
/""""'SI-_'FETCH"__E
BusE_SeI:from_memory"‘}
'\\. IR_Load B J/
_~S_DECODE_3™,
) 7
’ ' \to other instructions. ...
SN B S If IR=BRA)

“Branch Always" means we are going to load
PC with the address provided by the

i W If (R=ADD_AB)
+ If (IR=STA_DIR)

+ If (IR=LDA_DIR) S BRA_4 operand. PC is already pointing to this
If (IR=LDA_IMM) = Bus1_Sel = PC location in memory so we can put it out on

Bus2_Sel = Bus1 MAR. MAR will be updated with PC in the
MAR_Load next state.

MAR is now holding the address of the
operand. It will take 1 clock cycle for the
memory to provide the operand after
receiving the address. Since PC will be
loaded with a new value, there is no need to
increment it here as in prior instructions.

S_BRA 6

The operand that has been read from
Bus2_Sel=from_memory } memory is now available on Bus2 and can

P be latched into PC by asserting PC_Load.
PC will be updated with the operand in the
next state (e.g., S_FETCH_O0).

We are done executing this instruction so we can
return to the beginning and fetch the opcode of the
next instruction. Notice that PC is now pointing to
the new location to begin executing code.

Figure 13.12
State Diagram for

the BRA Instruction
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x"20".

Example: Simulation Waveform for BRA

Let's look at the timing diagram when executing the following branch always instruction
located at addresses x"06" and x"07" in program memory. The opcode for this instruction

BRA x"00

S_FETCH_0 puts PC into MAR
to provide the address of the
opcode. MAR is updated on the
next clock edge.

S_BRA_4 puts PC into MAR to
provide the address of the
operand. MAR is updated on
the next clock edge.

Figur

In S_FETCH_2, the opcode is In S_BRA_B6, the operand is available
available from memory. We route it from memory. We route it to Bus2
to Bus2 and assert IR_Load. IR will and assert PC_Load. PC will be
be updated on the next clock edge. updated on the next clock edge.
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— Instruction Register —— \‘}
# IR_Load o | [
=% IR - J 7 N S N N N - A 0 Y S T S S S R W
— Memory Address Register —— T
+ MAR_Load 1 1 3
2% MAR 07 E0 e S | —_loz I 1
ot e Va / A —y—— 1|
# PC_Inc 'y £ | N L / = Z
=9 pC o00((os ] o7 I oz J @ J
— General Purpose Registers —— I r
+ A_Load o
LA C |cC I F i
+ B_Load ' | /[
B 00 |00 I I
— Bus System — ! /
+ from_memory 00 (00 (20 ) (@ )
¢ to_memory 00 06 o7 log
= Busl_Sel 00 00
9 Bus2_Sel 01 Too J10 Joo [10 fo1
54 Busl oni% )] 73 T Joo
=% Bus2 oofflos_________ Jloo 20 Jhbo 7 2 @ _ Joo
* write o
_m4;
= port_in_00 cC cC_ ] L - | I B - _ =l [ - _l 1
 port_out_00 e fec
— T P PARMAREE o R EREREEE . R R EREEEEE % AR R ERERR R o
InS_FETCH_1, the PC is incremented S_BRA_5 is needed while waiting
while waiting for the memory to produce for the memory system to provide
the opcode. PC takes on its new value the operand. There is no need to
on the next edge of clock. increment PC in this state.

S DECODE_3 decodes the opcode
and knows that this is a “branch
always" and that the operand is the
data to be loaded into PC.

PC has been loaded with the
operand and the instruction
is now complete.

e 13.13

Simulation Waveforms for the BRA Instruction

Take screenshots of each of the four simulation waveforms verifying that each instruction is executing as expected.
These should look very similar to Figure 13.7, Figure 13.9, Figure 13.11, and Figure 13.13. Save the screenshots in

JPG format with descriptive names.

These four screenshot images and the three relevant VHDL files

(memory.vhd, data_path.vhd, and control_unit.vhd) satisfy the requirements for deliverable #2.
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13.1.5.3 Implementation of Basic Instructions on the FPGA

You are now going to implement your computer system on the DEO-CV FPGA board. This will involve creating a
new Quartus project and designing a top.vhd that instantiates your computer.vhd system. The purpose of the top.vhd
is to connect the computer ports to the 1/0 on the DEO-CV board. It will also handle instantiating the clock_div_prec.vhd
so that the computer can be run slow enough to observe its operation on the displays. Figure 13.14 shows the definition
for the top.vhd that you will implement.

DEO-CV Top-Level FPGA Port Mapping
The following shows how the I/O of the microcomputer maps to the 1/0 onthe FPGA.

top.vhd
computer.vhd p LEDR(7:0)
3.0
8 Char DecodeH—p HEX0(6:0)
SW(7:0) ,8’ P port_in_00 port_out_00 ’Ia = 4
“0000" & KEY(3:0) ,8' ) port_in_01 port_out_01 -/—I_ Char Decode 9 HEX1(6:0)
8
port_in_02 port_out_02 71_\—:2-_
8 Char Decode HEX2(6:0)
port_in_03 port_out_03 |4 7,4 I
: ;
port_in_04 port_out_04 ”a Char DecodeH—p HEX3(6:0)
ort_in_05 ort_out 05 30
palt I RAILIHE Char DecodeH—p HEX4(6:0)
port_in_06 port_out_06 -
port_in_07 port_out 07 Char Decode - HEX5(6:0)
port_in_08 port_out_08

) GPIO_0(7:0)

port_in_09 port_out 09
p GPIO_0(15:8)

port_in_10 port_out_10

port_in_11 port_out_11
port_in_12 port_out_12
port_in_13 port_out_13
port_in_14 port_out_14
port_in_15 port_out_15

Precision

'Y
L4
Clock |— clock
2
SW(9:8) 4-4p| Divider

A

CLOCK_50

reset

v

KEY4

Figure 13.14
Top-Level for Computer System Implementation on the DEO-CV Board
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You should create a program that continually reads from SW(7:0) and writes to LEDR(7:0), HEX(1:0), HEX(3:2),
and HEX(5:4). You can accomplish this using the instructions you have already implemented in part 3. Note that the
FPGA block diagram uses your clock_div_prec.vhd with select lines coming from SW(9:8) instead of SW(1:0) as in
prior labs. Also notice that the character decoders are instantiated outside of the computer system.

Take a short video (<5 s) showing the proper operation of your design. You should run your clock at 10 Hz so that
it is noticeable that a change on the slider switches doesn'’t appear on the LEDs and HEX displays instantaneously due
to the way the computer instructions are executed as a series of states. This video and your top.vhd file satisfy the
requirements for deliverable #3.

13.1.5.4 Implement Additional Instructions for the Computer System

You will now implement additional instructions to make the computer more functional. The instructions to
implement are listed below. Note that the ALU instructions will require you to add paths through the control unit FSM
in addition to behavior in the alu.vhd and CCR in the data_path.vhd. Also note that the conditional branch instructions
base their operation on the CCR. This means your test program must perform an ALU instruction that alters the
appropriate CCR flag just before the conditional branch instruction is executed.

Load & Store Instructions

e LDB IMM (2% of exercise)
e LDB DIR (2% of exercise)
e STB_DIR (2% of exercise)

ALU Instructions

e ADD_AB (2% of exercise)
e SUB_AB (2% of exercise)
e AND_AB (2% of exercise)
e OR_AB (2% of exercise)

e INCA (2% of exercise)
e INCB (2% of exercise)
e DECA (2% of exercise)
e DECB (2% of exercise)

Conditional Branch Instructions

e BEQ (2% of exercise)
e BCS (2% of exercise)
e BVS (2% of exercise)
e BMI (2% of exercise)

For each of instruction that is implemented, you must provide a state diagram, ModelSim simulation waveform,
and a demonstration of the instruction used on the DEO-CV Board to satisfy the deliverable for part 4.

Lab 13.1 After completing this lab exercise, can you:

e Design a VHDL model for an 8-bit computer system?

o Perform functional simulations to verify the proper execution of instructions by
observing simulation waveforms?

e Implement the computer on an FPGA and verify the proper execution of instructions
bv observina sianals on the various 1/0 of the DEQ-CV board?
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