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Preface
Why Another Book on Embedded Systems?

Embedded computers represent one of the most pervasive technologies of our time. When most
people think of computers, they think of their laptops and workstations, or even the servers that are the
backbone of the Internet; however, when one begins to contemplate how many technologies around
them use small, inexpensive computers embedded as their “brains,” one begins to more fully understand
the magnitude of how many embedded computers exist in our society. If you look around any room you
will see technology that is so commonplace, you may not even realize that most of it is run by an internal
computer. Technologies such as appliances, thermostats, handheld devices, projectors, televisions,
personal assistants, and radios all have small computers within them that control their operation. As
one starts to notice all of the embedded computers around them, they will quickly notice that there are
orders of magnitude more embedded computers than the standard general-purpose computers that run
Windows® or iOS™. As these technologies become smarter and are Wi-Fi connected, we move into era
called the Internet of Things. This next technological paradigm shift will turn all of the embedded
computers into a collaborative network in an attempt to make our lives better by automating taking
mundane tasks.

Simultaneous to the exponential increase in embedded computers in our society is the need for
engineers and software developers that can build and program these systems. Due to the high popularity
of embedded computers, there is also a wide range of embedded computer platforms. As such, the
textbooks that exist to aid in the education of embedded computers are somewhat fragmented.
Textbooks for embedded computers aren’t able to be written at only the theoretical level such as circuits
and electronics textbooks. Instead, they must identify a computer platform and focus the content on that
specific embedded computer technology. This leads to a large number of embedded systems books to
support the large number of embedded platforms. This also leads to books becoming obsolete much
faster than traditional engineering textbooks.

One reason for a new book in this area is creating comprehensive content around a widely popular
embedded computer, the Texas Instruments MSP430. The MSP430 is a modern computer platform that
is mature in the market and has a great deal of technical and educational support behind it. This means
that this platform will be relevant and supported for at least the next 10–15 years.

A second reason for a new book in this area is to provide content the way people actual learn (i.e., by
doing). Current embedded systems books, even those targeting the MSP430, tend to only provide small
code segments that can’t be directly run on a target platform. This new book approaches content delivery
around the model that the reader is sitting at a computer with an MSP430 plugged in and running each of
the examples as they move through the book. This learn-a-little, do-a-little is a proven pedagogical
strategy. It also supports both active learning within the classroom and self-regulated learning for
individual readers.

A third reason for a new book in this area is to provide a seamless delivery of both assembly
language and C language programming of the MSP430. Most embedded systems books are structured
in one of three ways: (1) they only cover assembly; (2) they only cover C; (3) they attempt to cover both
but don’t provide sufficient details of either. This new book will begin in assembly language as ameans to
show the lower-level operation of the computer hardware. It will then move into C to implement more
complex systems that require abstracting the lower-level hardware. With the design of the book
consisting of examples in both languages that can be directly coded and run, there will not be a void
between the examples and real implementation of the concepts as seen in other books.
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The three guiding principles for the design of this book are:

Learn by example This book is designed to teach the material the way it is learned, through example.
Every concept that is covered in this book is supported by numerous programming examples that
provide the reader with a step-by-step explanation for how and why the computer is doing what it is
doing.

Learn by doing This book targets the Texas Instruments MSP430 microcontroller. This platform is a
widely popular, low-cost embedded system that is used to illustrate each concept in the book. The book
is designed for a reader who is at their computer with the MSP430 plugged in so that each example can
be coded and run as they learn.

Build a foundational understanding first, then move into abstraction This book teaches
the basic operation of an embedded computer using assembly language first so that the computer
operation can be explored at a lower level. Once complicated systems are introduced (i.e., serial
communication and analog-to-digital converters), the book moves into the C programming language.
Moving to C allows the learner to abstract the operation of the lower-level hardware and focus on
understanding how to “make things work.” By spending time in assembly to understand the underlying
hardware, the transition to C can happen more rapidly while still leaving the reader with a foundational
understanding of the underlying hardware.

If this learning model is followed, the reader will come away with much more than knowledge of facts
and figures; they will have a skillset and experience with embedded systems that will be both marketable
and of key importance to our society.

This second edition adds two highly requested chapters: Chaps. 16 and 17. Both chapters provide
example programs on how to configure these systems and observe their operation.

How to Use This Book

This book is most effective when the reader has the Texas Instruments Inc. MSP430FR2355
LaunchPad™ Development Kit and codes along with the material. All examples can be directly run on
the LaunchPad™ board. All programs were created and compiled using the Texas Instruments Inc. Code
Composer Studio (CCS). This development environment is free from Texas Instruments and can be run
onmultiple operating systems. Each of the examples noted with a keyboard are ones that are intended to
be coded in CCS and run on the LaunchPad™ board.

There are three supporting documents that should also be downloaded from Texas Instruments to
provide background for the material in this book. The first is the MSP430FR4xx and MSP430FR2xx
Family User’s Guide1. This document gives the general concept of operation for the MSP430 architec-
ture that is used on the specific microcontroller targeted in this book. Throughout this book, this
document is referred to as the “MSP430 User’s Guide.” The second document that should be retrieved
is the MSP430FR235x, MSP430FR215x Mixed-Signal Microcontrollers Device-Specific Data Sheet2.
This second document provides the specific details of the MSP430FR2355 microcontroller device that is
used in each example. Throughout this book, this document is referred to as the” Device-Specific Data
Sheet.” The final document that should be retrieved is the MSP430FR235x LaunchPad™ Development
Kit User’s Guide3. This document describes the circuitry implemented on the LaunchPad™ board. This
document is critical to understanding the types of input/output and programming capability available on
the LaunchPad™ board.
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Additional Resources

Supporting videos will be posted to the author’s YouTube channel, which can be found at https://
www.youtube.com/c/DigitalLogicProgramming_LaMeres. This channel contains many other videos
beyond embedded systems to help people learn digital logic, basic programming, and robotics. Sub-
scribe to this channel in order to be notified when new videos for this book are posted.

Bozeman, MT, USA Brock J. LaMeres
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Chapter 1: Introduction to Embedded
Systems

This chapter introduces the general concept of an embedded system. The goal is to provide a high-
level understanding of what an embedded computer is, their role in modern society, and motivation to
learn more about them.

Learning Outcomes—After completing this chapter, you will be able to:

1.1 Describe the basic concept of an embedded system.

1.1 What Is an Embedded System?

When most people hear the term “computer” they immediately think of their laptops or PCs. More
recently, people have come to also associate portable devices such as smart phones and tablets with the
term computer; however, most people don’t tend to think of all of the modern electronics surrounding
them as computers. But in fact, the majority of the consumer electronics in our daily lives have a
computer that is controlling their operation. Items such as household appliances, thermostats, the mirror
controller in a vehicle, an office copy machine, and even a hearing aid are examples of electronics in our
daily lives that all have embedded computers at their core. The term to describe the small computers
within these electronic devices is an embedded computer. The entire system then becomes an embed-
ded system, implying that a small computer is included with the system and controls its operation [4–6].

So, what is the difference between the computers that we think of in laptops and workstations and
those embedded in the majority of consumer electronics? We will classify computers into two broad
categories: general-purpose and embedded. Let’s start with a general-purpose computer. This type of
computer is designed to run any type of software that the user desires. A user is able to install, uninstall,
and update software applications that meet the user’s current need. To support the abundance of
potential software applications that may be run, general-purpose computers have abundant resources
at their disposal. It is common for a general-purpose computer to have a variety of peripherals such as
displays, keyboards/keypads, mice, Internet connections, and wireless communication capability.
General-purpose computers also typically contain relatively high-performance hardware components
such as fast processors and large amounts of data and program storage. To manage the large amounts
of resources in a general-purpose computer, these devices require an operating system (OS). An
operating system controls all of the resources and allocates them to the various software applications
that are running. Common operating systems that you may be familiar with areWindows, iOS, and Linux.
All of these operating systems have the same purpose, to manage the hardware resources of the
computer so that any arbitrary software program may be successfully run on it. General-purpose
computers also are designed for heavy user interaction. A typical general-purpose computer is designed
to support a user sitting in front of it interacting with the software program using the keyboard, mouse,
and monitor.

Despite a general-purpose computer having abundant resources, the vast majority of the time these
resources are not being used. Activities such as typing an email or browsing the web use a very little
amount of the computer’s resources. But even though any single software programmay only use a small
amount of the resources available, a general-purpose computer must contain everything that is poten-
tially needed to support a future program that may require the resources. To provide all of this capability,
general-purpose computers are relatively expensive compared to their embedded systems’

# The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. J. LaMeres, Embedded Systems Design using the MSP430FR2355 LaunchPad™,
https://doi.org/10.1007/978-3-031-20888-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20888-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-20888-1_1#DOI


counterparts with laptops and workstations costing hundreds to thousands of dollars. Additionally, to
support the large number of resources, general-purpose computers are typically implemented using a
group of integrated circuits (ICs), or chips. A general-purpose computer typically has one chip that
implements its central processing unit (CPU), other chips to implement the data memory (i.e., RAM), and
others to implement the program storage (i.e., hard drive or solid-state drive). A general-purpose
computer is considered a distributed architecture because the full functionality of the computer is spread
across multiple IC chips. This type of architecture supports very sophisticated CPUs and large amounts
of data and program memory.

Now let’s consider the concept of an embedded computer. Many of the electronics that are used in
our daily lives don’t require a high-performance computer that runs Windows or iOS. Your coffee maker
doesn’t require a cutting-edge processor to make your coffee. Your thermostat doesn’t need the ability to
run Microsoft Word to control the temperature of the room. What these types of applications need is a
computer that can respond to inputs from the outside world (i.e., button presses or sensor inputs) and the
ability to send control signals to other sub-systems to accomplish a task (i.e., heat the water reservoir or
turn on the furnace). In these types of applications, the computer needs just enough resources to get the
job done. The small computers used for these dedicated applications are embedded computers.
Embedded computers are also referred to as microcontrollers, or MCUs, because they are the primary
controller for their dedicated application.

Embedded computers have a variety of traits that differentiate them from general-purpose
computers. First, embedded computers are mostly implemented on a single IC. An embedded computer
does not require the large amounts of RAM and program storage as in a general-purpose computer, so
all of the components of the computer can be put onto a single IC. Embedded computers also are able to
include a variety of common peripherals such as timers, analog-to-digital converters, digital-to-analog
converters, and serial interfaces to make them as versatile as possible when it comes to controlling all
types of electronic devices. Depending on the amount of resources included, the physical size of an
embedded computer chip can be extremely small. Consider the size of a thumb drive. This small storage
stick has a full embedded computer system on it. Now compare that to the physical size of the hardware
that resides in a general-purpose laptop. The small size of an embedded computer chip gives it the ability
to be used in an endless list of applications.

Another attribute of an embedded computer is that it isn’t designed to run arbitrary software
programs that are installed at the will of the user. An embedded computer in a toaster isn’t designed
to have a new program installed by the user to make it control a microwave. The software that an
embedded system runs is called firmware to highlight that it is not intended to be changed frequently.
While some embedded systems can have their software updated by downloading a new program, this is
a highly infrequent occurrence in the life of the computer (how many times have you upgraded the
firmware in your car’s mirrors?). Since an embedded computer does not need to support general-
purpose software programs, its software can be designed to optimize the functionality for the application
at hand. This means there is a tight coupling between the hardware and software components of the
embedded computer. This provides an optimized design that is typically only suited for the application
that the embedded computer is made for. Embedded systems can contain operating systems; however,
these OSs aren’t anything like Windows or iOS. Instead, these operating systems act as task schedulers
coordinating real-time activities such as reading from buttons or sensors and performing response
actions. Operating systems for embedded computers are called real-time operating systems (RTOS),
reflecting their purpose as a task scheduler. Not all embedded computers run an RTOS, but many just
simply run dedicated software to accomplish a specific task.
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Another attribute of an MCU is their low cost. While a general-purpose microprocessor chip can cost
tens to hundreds of dollars, an MCU can cost 10s of cents to a few dollars. This low cost is driven by the
high-volume manufacturing process used to create MCUs. As semiconductor manufacturing volume
goes up, the cost of the individual chips produced goes down. The low cost of an embedded computer
chip reveals the prevalence and popularity of the embedded computer. The number of embedded
computers sold globally is multiple orders of magnitude larger than general-purpose computers, and
this gap is only expected to grow as our devices become smarter and interconnected and more
functionality is embedded into automobiles. In 2018, over 25 billion MCUs were sold globally [1].
Compare this to the ~400 million personal computers (PCs) sold annually that are based on general-
purpose CPUs [2]. In fact, it is estimated that only ~2% of computer chips produced end up in PCs. To put
this in perspective, every year there are tens of billions of new embedded systems being created to
improve the quality of our lives [7,8].

Smart phones and tablets are a technology that hasmoved from the embedded systems category into
the general-purpose description over the past decade. When cellular phones and personal desktop
assistances first emerged, they were very much embedded systems. These devices were not able to
support arbitrary software being installed on them and were designed to perform very specific tasks (phone
calls, text messaging, scheduling, etc.); however, as processing technology advanced, cellular phones
began to have the power to support more general-purpose operating systems such as Android and iOS.
This gave them the ability to support different applications (i.e., apps) that could access the phone or
tablets’ abundant resources. Today, smart phones and tablets are considered general-purpose computers
and only different from laptops and workstations in their size, portability, and software support.

From an educational perspective, general-purpose computers and embedded computers are effec-
tively the same. They are both computers that consist of hardware resources that are programmed to
accomplish tasks using software. We can learn about the architecture of a computer using either, but
focusing on embedded computers has a few advantages. First, they are inexpensive enough that every
reader of this book can have an embedded computer sitting next to themwhere they can gain experience
programming the MCU to do a variety of tasks. This allows embedded systems education to move from
simply reading facts and figures to an active learning process where a deeper understanding of
computers can be obtained. An additional bonus of this approach is that after completing the exercises
in this book, the reader will have a practical skill set that is highly sought after in industry. Figure 1.1
shows a graphical depiction of the applications of computers and categorizing them into either general-
purpose or embedded.

CONCEPT CHECK

CC1.1 Why don’t we just make one computer chip that serves the needs of every application
on Earth? It seems like that would be a lot simpler than having thousands of different
computer products.

A) That isn’t practical because every application has a different set of
requirements. If we tried to create a “super chip” that could be simultaneously
used in high-end servers and microwave ovens, then our microwave ovens
would cost tens of thousands of dollars and consume much more electrical
power.

B) It is illegal to just have one computer chip design. It goes against the idea of
capitalism and competition in the marketplace.

C) They are still trying to create one computer chip that meets every application. It
is just really hard.

D) The answer to this concept check is A.
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Fig. 1.1
Applications of embedded system [9]
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Summary

v Computers can be put into two broad
categories: general-purpose and embedded.

v General-purpose computers are designed to
run any arbitrary software program. Thus,
they contain abundant hardware resources
to support potential applications and a
sophisticated operating system to manage
the resources.

v Embedded systems have a small computer
embedded within them that controls the oper-
ation of the device.

v Embedded computers have enough
resources to “get the job done.” They are
implemented on a single IC, are very low in
cost, and have a tight coupling between their
hardware and software that optimizes their
operation for the application they are
designed for.

v The number of embedded computer chips
sold each year outnumbers general-purpose
computer chips by multiple orders of
magnitude.

Exercise Problems

Section 1.1: What Is an Embedded
System?
1.1.1 Classify a computer with the following

attributes into either “general-purpose” or
“embedded”: runs a sophisticated operating
system such as Windows.

1.1.2 Classify a computer with the following
attributes into either “general-purpose” or
“embedded”: implemented on a single chip.

1.1.3 Classify a computer with the following
attributes into either “general-purpose” or
“embedded”: can cost less than a US dollar.

1.1.4 Classify a computer with the following
attributes into either “general-purpose” or
“embedded”: designed to run any arbitrary soft-
ware application the user desires.

1.1.5 Classify a computer with the following
attributes into either “general-purpose” or
“embedded”: can cost hundreds to thousands
of US dollars.

1.1.6 Classify a computer with the following
attributes into either “general-purpose” or
“embedded”: its software is called firmware to
highlight that it is rarely changed after being
deployed.

1.1.7 Classify a computer with the following
attributes into either “general-purpose” or
“embedded”: also called a microcontroller
because it controls the sub-systems around it.

1.1.8 Classify a computer with the following
attributes into either “general-purpose” or
“embedded”: can have a real-time operating
system, but the OS primarily acts as a task
scheduler.

1.1.9 Classify a computer with the following
attributes into either “general-purpose” or
“embedded”: has a tight coupling between the
hardware and software, which optimizes its
operation for the application at hand.

1.1.10 Classify a computer with the following
attributes into either “general-purpose” or
“embedded”: is the most popular type of com-
puter on Earth.

1.1.11 For the following application, would a general-
purpose computer or an embedded computer
be better suited: running the Windows
operating system.

1.1.12 For the following application, would a general-
purpose computer or an embedded computer
be better suited: controlling an Xbox.

1.1.13 For the following application, would a general-
purpose computer or an embedded computer
be better suited: running a washing machine.

1.1.14 For the following application, would a general-
purpose computer or an embedded computer
be better suited: controlling the radio in a car.

1.1.15 For the following application, would a general-
purpose computer or an embedded computer
be better suited: controlling a satellite.

1.1.16 For the following application, would a general-
purpose computer or an embedded computer
be better suited: controlling a wireless router.

1.1.17 For the following application, would a general-
purpose computer or an embedded computer
be better suited: running servers in a data farm
based on the Windows platform.

1.1.18 For the following application, would a general-
purpose computer or an embedded computer
be better suited: a laptop running iOS.

1.1.19 For the following application, would a general-
purpose computer or an embedded computer
be better suited: a Linux workstation used to
develop for an MCU.

1.1.20 For the following application, would a general-
purpose computer or an embedded computer
be better suited: controlling a video doorbell.
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Chapter 2: Digital Logic Basics
This chapter provides a brief summary of classical digital logic design [10]. The point of this chapter

is to expose the reader to the main concepts of digital logic so that they are familiar with them when
moving into the computer organization topics covered later in the book. It is not intended to be an
in-depth coverage of digital logic design. Rather, it is intended to expose the reader to the terminology
used in digital logic, the most common number systems used in embedded systems, the basic logic
operations used in combinational logic, and the basic operation of sequential logic, including synchro-
nous registers and finite state machines.

Learning Outcomes—After completing this chapter you will be able to:

2.1 Describe the formation and use of positional number systems including conversions
between bases and basic arithmetic.

2.2 Describe the basic operation of combinational logic circuits.
2.3 Describe the basic operation of sequential logic circuits.
2.4 Describe the basic operation of semiconductor memory including different implementation

technologies.

2.1 Number Systems

Logic circuits are used to generate and transmit 1s and 0s to compute and convey information. This
two-valued number system is called binary. As presented earlier, there are many advantages of using a
binary system; however, the human brain has been taught to count, label, and measure using the
decimal number system. The decimal number system contains ten unique symbols (0 ! 9). In order
to bridge the gap between the way our brains think (decimal) and how we build our computers (binary),
we need to understand the basics of number systems. This includes the formal definition of a positional
number system and how it can be extended to accommodate any arbitrarily large (or small) value. This
also includes how to convert between different number systems that contain different numbers of
symbols. In this section, we cover three different number systems: decimal (ten symbols), binary (two
symbols), and hexadecimal (16 symbols). The study of decimal and binary is obvious as they represent
how our brains interpret the physical world (decimal) and how our computers work (binary). Hexadecimal
is studied because it is a useful means to represent large sets of binary values using a manageable
number of symbols. This section will also discuss how to perform basic arithmetic (addition and
subtraction) in the binary number system and how to represent negative numbers. The goal of this
section is to provide an understanding of the basic principles of number systems so that we can design
computer programs that use arbitrary number bases.

2.1.1 Positional Number Systems

A positional number system allows the expansion of the original set of symbols so that they can be
used to represent any arbitrarily large (or small) value. For example, if we use the ten symbols in our
decimal system, we can count from 0 to 9. Using just the individual symbols we do not have enough
symbols to count beyond 9. To overcome this, we use the same set of symbols but assign a different
value to the symbol based on its position within the number. The position of the symbol with respect to
other symbols in the number allows an individual symbol to represent greater (or lesser) values. We can
use this approach to represent numbers larger than the original set of symbols. For example, let’s say we
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want to count from 0 upward by 1. We begin counting 0, 1, 2, 3, 4, 5, 6, 7, 8 to 9. When we are out of
symbols and wish to go higher, we bring on a symbol in a different position with that position being valued
higher and then start counting over with our original symbols (e.g., . . ., 9, 10, 11,. . . 19, 20, 21,. . .). This is
repeated each time a position runs out of symbols (e.g., . . ., 99, 100, 101. . . 999, 1000, 1001,. . .).

First, let’s look at the formation of a number system. The first thing that is needed is a set of symbols.
The formal term for one of the symbols in a number system is a numeral.One or more numerals are used
to form a number. We define the number of numerals in the system using the terms radix or base. For
example, our decimal number system is said to be base 10, or have a radix of 10, because it consists of
ten unique numerals or symbols.

Radix=Base�the number of numerals in thenumber system

The next thing that is needed is the relative value of each numeral with respect to the other numerals
in the set. We can say 0 < 1 < 2 < 3, etc., to define the relative magnitudes of the numerals in this set. The
numerals are defined to be greater or less than their neighbors by a magnitude of 1. For example, in the
decimal number system each of the subsequent numerals is greater than its predecessor by exactly
1. When we define this relative magnitude, we are defining that the numeral 1 is greater than the numeral
0 by a magnitude of 1; the numeral 2 is greater than the numeral 1 by a magnitude of 1; etc. At this point
we have the ability to count from 0 to 9 by 1s. We also have the basic structure for mathematical
operations that have results that fall within the numeral set from 0 to 9 (e.g., 1þ 2¼ 3). In order to expand
the values that these numerals can represent, we need define the rules of a positional number system.

2.1.1.1 Generic Structure

In order to represent larger or smaller numbers than the lone numerals in a number system can
represent, we adopt a positional system. In a positional number system, the relative position of the
numeral within the overall number dictates its value. When we begin talking about the position of a
numeral, we need to define a location to which all of the numerals are positioned with respect to. We
define the radix point as the point within a number to which numerals to the left represent whole numbers
and numerals to the right represent fractional numbers. The radix point is denoted with a period (i.e., “.”).
A particular number system often renames this radix point to reflect its base. For example, in the base
10 number system (i.e., decimal), the radix point is commonly called the decimal point; however, the term
radix point can be used across all number systems as a generic term. If the radix point is not present in a
number, it is assumed to be to the right of number. Figure 2.1 shows an example number highlighting the
radix point and the relative positions of the whole and fractional numerals.

Fig. 2.1
Definition of radix point
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Next, we need to define the position of each numeral with respect to the radix point. The position of
the numeral is assigned a whole number with the number to the left of the radix point having a position
value of 0. The position number increases by 1 as numerals are added to the left (2, 3, 4. . .) and
decreased by 1 as numerals are added to the right (�1, �2, �3). We will use the variable p to represent
position. The position number will be used to calculate the value of each numeral in the number based on
its relative position to the radix point. Figure 2.2 shows the example number with the position value of
each numeral highlighted.

In order to create a generalized format of a number, we assign the term digit (d) to each of the
numerals in the number. The term digit signifies that the numeral has a position. The position of the digit
within the number is denoted as a subscript. The term digit can be used as a generic term to describe a
numeral across all systems, although some number systems will use a unique term instead of digit which
indicates its base. For example, the binary system uses the term bit instead of digit; however, using the
term digit to describe a generic numeral in any system is still acceptable. Figure 2.3 shows the generic
subscript notation used to describe the position of each digit in the number.

We write a number from left to right starting with the highest position digit that is greater than 0 and
end with the lowest position digit that is greater than 0. This reduces the number of numerals that are
written; however, a number can be represented with an arbitrary number of 0s to the left of the highest
position digit greater than 0 and an arbitrary number of 0s to the right of the lowest position digit greater
than 0 without affecting the value of the number. For example, the number 132.654 could be written as
0132.6540 without affecting the value of the number. The 0s to the left of the number are called leading
0s and the 0s to the right of the number are called trailing 0s. The reason this is being stated is because
when a number is implemented in circuitry, the number of numerals is fixed, and each numeral must have
a value. The variable n is used to represent the number of numerals in a number. If a number is defined
with n¼4, that means four numerals are always used. The number 0 would be represented as 0000 with
both representations having an equal value.

Fig. 2.2
Definition of position number (p) within the number

Fig. 2.3
Digit notation
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2.1.1.2 Decimal Number System (Base 10)

As mentioned earlier, the decimal number system contains ten unique numerals (0, 1, 2, 3, 4, 5, 6, 7,
8, and 9). This system is thus a base 10 or a radix 10 system. The relative magnitudes of the symbols are
0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

2.1.1.3 Binary Number System (Base 2)

The binary number system contains two unique numerals (0 and 1). This system is thus a base 2 or
a radix 2 system. The relative magnitudes of the symbols are 0 < 1. At first glance, this system looks very
limited in its ability to represent large numbers due to the small number of numerals. When counting up,
as soon as you count from 0 to 1, you are out of symbols andmust increment the pþ 1 position in order to
represent the next number (e.g., 0, 1, 10, 11, 100, 101, . . .); however, magnitudes of each position scale
quickly so that circuits with a reasonable amount of digits can represent very large numbers. The term bit
is used instead of digit in this system to describe the individual numerals and at the same time indicate
the base of the number.

Due to the need for multiple bits to represent meaningful information, there are terms dedicated to
describing the number of bits in a group. When 4 bits are grouped together, they are called a nibble.
When 8 bits are grouped together, they are called a byte. Larger groupings of bits are called words. The
size of the word can be stated as either an n-bit word or omitted if the size of the word is inherently
implied. For example, if you were using a 32-bit microprocessor, using the term word would be
interpreted as a 32-bit word. For example, if there was a 32-bit grouping, it would be referred to as a
32-bit word. The leftmost bit in a binary number is called theMost Significant Bit (MSB). The rightmost bit
in a binary number is called the Least Significant Bit (LSB).

2.1.1.4 Hexadecimal Number System (Base 16)

The hexadecimal number system contains 16 unique numerals. This system is most often referred
to in spoken word as “hex” for short. Since we only have ten Arabic numerals in our familiar decimal
system, we need to use other symbols to represent the remaining six numerals. We use the alphabetic
characters A–F in order to expand the system to 16 numerals. The 16 numerals in the hexadecimal
system are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. The relative magnitudes of the symbols are
0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < A < B < C < D < E < F. We use the generic term digit to describe the
numerals within a hexadecimal number.

At this point, it becomes necessary to indicate the base of a written number. The number 10 has an
entirely different value if it is a decimal number or binary number. In order to handle this, a subscript is
typically included at the end of the number to denote its base when writing out the number. For example,
1010 indicates that this number is decimal “ten.” If the number was written as 102, this number would
represent binary “one zero.” Table 2.1 lists the equivalent values in each of the four number systems just
described for counts from 010 to 1510. The left side of the table does not include leading 0s. The right side
of the table contains the same information but includes the leading 0s. The equivalencies of decimal,
binary, and hexadecimal in this table are typically committed to memory.
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When typing out different number bases within the MSP430 low-level programming environment,
special syntax is used to specify the desired base. Figure 2.4 shows the allowable syntax for specifying
constant literals for the MSP430. The term “literal” simply means that the number is to be treated as a
number, not as something else such as a location in memory.

Table 2.1
Number system equivalency (decimal, binary, hexadecimal)

Fig. 2.4
Specifying different number bases in the MSP430 low-level programming environment
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CONCEPT CHECK

CC2.1.1 The base of a number system is arbitrary and is commonly selected to match a particular
aspect of the physical system in which it is used (e.g., base 10 corresponds to our 10 fingers,
base 2 corresponds to the 2 states of a switch). If a physical system contained 3 unique modes
and a base of 3 was chosen for the number system, what is the base 3 equivalent of the decimal
number 3?

A) 310 ¼ 113

B) 310 ¼ 33

C) 310 ¼ 103

D) 310 ¼ 213

2.1.2 Base Conversion

Now we look at converting between bases. There are distinct techniques for converting to and from
decimal. There are also techniques for converting between bases that are powers of 2 (e.g., base 2, 4,
8, and 16).

2.1.2.1 Converting to Decimal

The value of each digit within a number is based on the individual digit value and the digit’s position.
Each position in the number contains a different weight based on its relative location to the radix point.
The weight of each position is based on the radix of the number system that is being used. The weight of
each position in decimal is defined as:

Weight= Radixð Þp

This expression gives the number system the ability to represent fractional numbers since an
expression with a negative exponent (e.g., x�y) is evaluated as 1 over the expression with the exponent
change to positive (e.g., 1/xy). Figure 2.5 shows the generic structure of a number with its positional
weight highlighted.

In order to find the decimal value of each of the numerals in the number, its individual numeral value
is multiplied by its positional weight. In order to find the value of the entire number, each value of the
individual numeral-weight products is summed. The generalized format of this conversion is written as:

Fig. 2.5
Weight definition
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Total Decimal Value ¼
Xpmax

i¼pmin

di ∙ radixð Þi

In this expression, pmax represents the highest position number that contains a numeral greater than
0. The variable pmin represents the lowest position number that contains a numeral greater than 0. These
limits are used to simplify the hand calculations; however, these terms theoretically could be þ1 to �1
with no effect on the result since the summation of every leading 0 and every trailing 0 contributes
nothing to the result.

As an example, let’s evaluate this expression for a decimal number. The result will yield the original
number but will illustrate how positional weight is used. Let’s take the number 132.65410. To find the
decimal value of this number, each numeral is multiplied by its positional weight and then all of the
products are summed. The positional weight for the digit 1 is (radix)p or (10)2. In decimal this is called the
hundred’s position. The positional weight for the digit 3 is (10)1, referred to as the ten’s position. The
positional weight for digit 2 is (10)0, referred to as the 1s position. The positional weight for digit 6 is (10)�1

, referred to as the tenth’s position. The positional weight for digit 5 is (10)�2, referred to as the
hundredth’s position. The positional weight for digit 4 is (10)�3, referred to as the thousandth’s position.
When these weights are multiplied by their respective digits and summed, the result is the original
decimal number 132.65410. Example 2.1 shows this process step by step.

Example 2.1
Converting decimal to decimal
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This process is used to convert between any other base to decimal. Let’s convert 101.112 to
decimal. The same process is followed with the exception that the base in the summation is changed
to 2. Converting from binary to decimal can be accomplished quickly in your head due to the fact that the
bit values in the products are either 1 or 0. That means any bit that is a 0 has no impact on the outcome
and any bit that is a 1 simply yields the weight of its position. Example 2.2 shows the step-by-step
process converting a binary number to decimal.

Let’s now convert 1AB.EF16 to decimal. The same process is followed with the exception that the
base is changed to 16. When performing the conversion, the decimal equivalent of the numerals A–F
needs to be used. Example 2.3 shows the step-by-step process converting a hexadecimal number to
decimal.

Example 2.2
Converting binary to decimal
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In some cases, it is desired to specify a level of accuracy for the conversion in order to bound the
number of fractional digits in the final result. For example, if the conversion in Example 2.3 was stated as
“convert 1AB.EF16 to decimal with a fractional accuracy of 2 digits,” the final result would be 427.9310.
How rounding is handled can also be specified with the two options being with or without rounding. In the
case where the conversion is performed with rounding, additional fractional digits may need to be
computed to determine if the least significant digit of the new decimal fraction needs to be altered. For
example, let’s say the conversion in Example 2.3 is stated as “convert 1AB.EF16 to decimal with a
fractional accuracy of 4 digits with rounding.” In this case, the final result would be 427.933610. Notice
how rounding was applied to the digit in position p ¼ �3 changing it from a 5 to a 6 based on the value in
position p ¼ �4. Now let’s say the conversion in Example 2.3 is stated as “convert 1AB.EF16 to decimal
with a fractional accuracy of 4 digits without rounding.” In this case, the final result would be 427.933510.
Notice how without rounding simply drops all of the digits beyond the specified level of accuracy.

2.1.2.2 Converting from Decimal

The process of converting from decimal to another base consists of two separate algorithms. There
is one algorithm for converting the whole number portion of the number and another algorithm for
converting the fractional portion of the number. The process for converting the whole number portion
is to divide the decimal number by the base of the system you wish to convert to. The division will result in
a quotient and a whole number remainder. The remainder is recorded as the least significant numeral in
the converted number. The resulting quotient is then divided again by the base, which results in a new
quotient and new remainder. The remainder is recorded as the next higher-order numeral in the new

Example 2.3
Converting hexadecimal to decimal
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number. This process is repeated until a quotient of 0 is achieved. At that point the conversion is
complete. The remainders will always be within the numeral set of the base being converted to.

The process for converting the fractional portion is to multiply just the fractional component of the
number by the base. This will result in a product that contains a whole number and a fraction. The whole
number is recorded as themost significant digit of the new converted number. The new fractional portion
is then multiplied again by the base with the whole number portion being recorded as the next lower-
order numeral. This process is repeated until the product yields a fractional component equal to 0 or the
desired level of accuracy has been achieved. The level of accuracy is specified by the number of
numerals in the new converted number. For example, the conversion would be stated as “convert this
decimal number to binary with a fractional accuracy of 4 bits.” This means the final result would only have
4 bits in the fraction. In cases where the conversion does not yield exactly 4 fractional bits, there are two
approaches that can be used. The first is to have no rounding, which means the conversion simply stops
at the desired accuracy. The second is to apply rounding, which means additional bits beyond the
desired accuracy are computed in order to determine whether the least significant bit is reported.

Let’s convert 11.37510 to binary. Example 2.4 shows the step-by-step process converting a decimal
number to binary.

Example 2.4
Converting decimal to binary
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In many binary conversions to binary, the number of fractional bits that result from the conversion is
more than what is needed. In this case, rounding is applied to limit the fractional accuracy. The simplest
rounding approach for binary numbers is to continue the conversion for one more bit beyond the desired
fractional accuracy. If the next bit is a 0, then you leave the fractional component of the number as is.
If the next bit is a 1, you round the least significant bit of your number up. Often this rounding will result in
a cascade of roundings from the LSB to the MSB. As an example, let’s say that the conversion in
Example 2.4 was specified to have a fractional accuracy of 2 bits. If the bit in position p ¼ �3 was a
0 (which it is not, but let’s just say it is for the sake of this example), then the number would be left as is
and the final converted number would be 1011.012; however, if the bit in position p ¼ �3 was a 1 (as it
actually is in Example 2.4), then we would need to apply rounding. We would start with the bit in position
p ¼ �2. Since it is a 1, we would round that up to a 0, but we would need to apply the overflow of this
rounding to the next higher-order bit in position p ¼�1. That would then cause the value of p ¼ �1 to go
from a 0 to a 1. The final result of the conversion with rounding would be 1011.102.

Let’s now convert 254.65510 to hexadecimal with an accuracy of three fractional digits. When doing
this conversion, all of the divisions and multiplications are done using decimal. If the results end up
between 1010 and 1510, then the decimal numbers are substituted with their hex symbol equivalent (i.e.,
A to F). Example 2.5 shows the step-by-step process of converting a decimal number to hex with a
fractional accuracy of three digits.

Example 2.5
Converting decimal to hexadecimal
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Rounding of hexadecimal digits uses a similar approach as when rounding decimal numbers, with
the exception that the middle of the range of the numbers lies between digits 716 and 816. This means that
any number to be rounded that is 816 or greater will be rounded up. Numbers that are 716 or less will be
rounded down, which means the fractional component of the converted number is left as in.

2.1.2.3 Converting Between 2n Bases

Converting between 2n bases (e.g., 2, 4, 8, and 16) takes advantage of the direct mapping that each
of these bases has back to binary. Base 8 numbers take exactly 3 binary bits to represent all eight
symbols (i.e., 08 ¼ 0002, 78 ¼ 1112). Base 16 numbers take exactly 4 binary bits to represent all
16 symbols (i.e., 016 ¼ 00002, F16 ¼ 11112).

When converting from binary to any other 2n base, the whole number bits are grouped into the
appropriate-sized sets starting from the radix point and working left. If the final leftmost grouping does not
have enough symbols, it is simply padded on left with leading 0s. Each of these groups is then directly
substituted with their 2n base symbol. The fractional number bits are also grouped into the appropriate-
sized sets starting from the radix point, but this time working right. Again, if the final rightmost grouping
does not have enough symbols, it is simply padded on the right with trailing 0s. Each of these groups is
then directly substituted with their 2n base symbol.

Example 2.6 shows the step-by-step process of converting a binary number to hexadecimal.

Example 2.6
Converting binary to hexadecimal
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Example 2.7 shows the step-by-step process of converting a hexadecimal number to binary.

CONCEPT CHECK

CC2.1.2 A “googol” is the term for the decimal number 1e100. When written out manually
this number is a 1 with 100 0s after it (e.g., 10,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000). This term is more commonly associated
with the search engine company Google, which uses a different spelling but is
pronounced the same. How many bits does it take to represent a googol in
binary?

A) 100 bits

B) 256 bits

C) 332 bits

D) 333 bits

2.1.3 Binary Arithmetic

2.1.3.1 Addition (Carries)

Binary addition is a straightforward process that mirrors the approach we have learned for longhand
decimal addition. The two numbers (or terms) to be added are aligned at the radix point and addition
begins at the least significant bit. If the sum of the least significant position yields a value with two bits
(e.g., 102), then the least significant bit is recorded, and the most significant bit is carried to the next
higher position. The sum of the next higher position is then performed including the potential carry bit
from the prior addition. This process continues from the least significant position to the most significant
position. Example 2.8 shows how addition is performed on two individual bits.

Example 2.7
Converting hexadecimal to binary
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When performing binary addition, the width of the inputs and output is fixed (i.e., n-bits). Carries that
exist within the n-bits are treated in the normal fashion of including them in the next higher position sum;
however, if the highest position summation produces a carry, this is a uniquely named event. This event
is called a carry out or the sum is said to generate a carry. The reason this type of event is given special
terminology is because in real circuitry, the number of bits of the inputs and output is fixed in hardware
and the carryout is typically handled by a separate circuit. Example 2.9 shows this process when adding
two 4-bit numbers.

The largest decimal sum that can result from the addition of two binary numbers is given by
2�(2n�1). For example, two 8-bit numbers to be added could both represent their highest decimal
value of (2n�1) or 25510 (i.e., 1111 11112). The sum of this number would result in 51010 or (1 1111
11102). Notice that the largest sum achievable would only require one additional bit. This means
that a single carry bit is sufficient to handle all possible magnitudes for binary addition.

Example 2.8
Single bit binary addition

Example 2.9
Multiple bit binary addition
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2.1.3.2 Subtraction (Borrows)

Binary subtraction also mirrors longhand decimal subtraction. In subtraction, the formal terms for the
two numbers being operated on are minuend and subtrahend. The subtrahend is subtracted from the
minuend to find the difference. In longhand subtraction, the minuend is the top number and the
subtrahend is the bottom number. For a given position if the minuend is less than the subtrahend, it
needs to borrow from the next higher-order position to produce a difference that is positive. If the next
higher position does not have a value that can be borrowed from (i.e., 0), then it in turn needs to borrow
from the next higher position and so forth. Example 2.10 shows how subtraction is performed on two
individual bits.

As with binary addition, binary subtraction is accomplished on fixed widths of inputs and output (i.e.,
n-bits). The minuend and subtrahend are aligned at the radix point and subtraction begins at the least
significant bit position. Borrows are used as necessary as the subtractions move from the least signifi-
cant position to the most significant position. If the most significant position requires a borrow, this is a
uniquely named event. This event is called a borrow in or the subtraction is said to require a borrow.
Again, the reason this event is uniquely named is because in real circuitry, the number of bits of the input
and output is fixed in hardware and the borrow in is typically handled by a separate circuit. Example 2.11
shows this process when subtracting two 4-bit numbers.

Example 2.10
Single bit binary subtraction

Example 2.11
Multiple bit binary subtraction
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Notice that if the minuend is less than the subtrahend, then the difference will be negative. At this
point, we need a way to handle negative numbers.

CONCEPT CHECK

CC2.1.3 If an 8-bit computer system can only perform unsigned addition on 8-bit inputs and
produce an 8-bit sum, how is it possible for this computer to perform addition on
numbers that are larger than what can be represented with 8-bits (e.g.,
100010 þ 100010 ¼ 200010)?

A) There are multiple 8-bit adders in a computer to handle large numbers.

B) The result is simply rounded to the nearest 8-bit number.

C) The computer returns an error and requires smaller numbers to be entered.

D) The computer keeps track of the carry out and uses it in a subsequent 8-bit
addition, which enables larger numbers to be handled.

2.1.4 Unsigned and Signed Numbers

All of the number systems presented in the prior sections were positive. We need to also have a
mechanism to indicate negative numbers. When looking at negative numbers, we only focus on the
mapping between decimal and binary since octal and hexadecimal are used as just another representa-
tion of a binary number. In decimal, we are able to use the negative sign in front of a number to indicate it
is negative (e.g., �3410). In binary, this notation works fine for writing numbers on paper (e.g., �10102),
but we need a mechanism that can be implemented using real circuitry. In a real digital circuit, the circuits
can only deal with 0s and 1s. There is no “�” in a digital circuit. Since we only have 0s and 1s in the
hardware, we use a bit to represent whether a number is positive or negative. This is referred to as the
sign bit. If a binary number is not going to have any negative values, then it is called an unsigned number
and it can only represent positive numbers. If a binary number is going to allow negative numbers, it is
called a signed number. It is important to always keep track of the type of number we are using as the
same bit values can represent very different numbers depending on the coding mechanism that is
being used.

2.1.4.1 Unsigned Numbers

An unsigned number is one that does not allow negative numbers. When talking about this type of
code, the number of bits is fixed and stated up front. We use the variable n to represent the number of bits
in the number. For example, if we had an 8-bit number, we would say, “This is an 8-bit, unsigned number.”

The number of unique codes in an unsigned number is given by 2n. For example, if we had an 8-bit
number, we would have 28 or 256 unique codes (e.g., 0000 00002 to 1111 11112).

The range of an unsigned number refers to the decimal values that the binary code can represent. If
we use the notationNunsigned to represent any possible value that an n-bit, unsigned number can take on,
the range would be defined as: 0 < Nunsigned < (2n �1)

Range of anUNSIGNED number⇒ 0<Nunsigned< 2n � 1ð Þ

22 • Chapter 2: Digital Logic Basics



For example, if we had an unsigned number with n ¼ 4, it could take on a range of values from þ010
(00002) to þ1510 (11112). Notice that while this number has 16 unique possible codes, the highest
decimal value it can represent is 1510. This is because one of the unique codes represents 010. This is
the reason that the highest decimal value that can be represented is given by (2n�1). Example 2.12
shows this process for a 16-bit number.

2.1.4.2 Signed Numbers (Two’s Complement)

Signed numbers are able to represent both positive and negative numbers. The most significant bit
of a signed numbers is always the sign bit, which represents whether the number is positive or negative.
The sign bit is defined to be a 0 if the number is positive and 1 if the number is negative. When using
signed numbers, the number of bits is fixed so that the sign bit is always in the same position. There are a
variety of ways to encode negative numbers using a sign bit. The encoding method used exclusively
in modern computers is called two’s complement. When talking about a signed number, the number
of bits and the type of encoding is always stated. For example, we would say, “This is an 8-bit, two’s
complement number.”

In a two’s complement encoding scheme, the negative number is obtained by subtracting its
positive equivalent from 2n. This is identical to performing a complement on the positive equivalent
and then adding 1. If a carry is generated, it is discarded. This procedure is called taking the two’s
complement of a number or performing two’s complement negation. The procedure of complementing
each bit and adding 1 is the most common technique to perform a two’s complement. In this way, the
most significant bit of the number is still the sign bit (0 ¼ positive, 1 ¼ negative), but all of the negative
numbers are in essence shifted up so that there are not duplicate codes for 0. Taking the two’s
complement of a positive number will give its negative counterpart and vice versa. Table 2.2 shows
the values represented by a 4-bit two’s complement number.

Example 2.12
Finding the range of an unsigned number
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There are many advantages of two’s complement encoding that make it the prevalent signed
number scheme in modern computers. First, it uses all of the possible codes available to represent a
number (i.e., there are not two codes representing 0 that come from the notion of a positive 0 and
negative 0). Two’s complement also provides a sequence of numbers that are each 1 value away from
their neighboring codes when applying a traditional binary count. This ordering allows traditional addition
operations to be applied to two’s complement in the same manner as when using unsigned numbers.
Finally, the sequence of codes has a rollover characteristic, meaning that the highest value is only
1 value away from the lowest value. This characteristic means that when incrementing through as set of
two’s complement numbers, when you reach the maximum value and increment, it will go to the lowest
value and continue incrementing up.

The range of two’s complement numbers is a critical consideration when using this encoding
scheme. If we use the notation N2comp to represent any possible value that an n-bit, two’s complement
number can take on, the range of a two’s complement number is defined as:

Range of a TWO’S COMPLEMENT number⇒ � 2n�1
� �

� N2’s comp � þ 2n�1 � 1
� �

Example 2.13 shows how to use this expression to find the range of decimal values that a 32-bit,
two’s complement code can represent.

Table 2.2
Decimal values that a 4-bit, two’s complement code can represent
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The process of finding the decimal value of a two’s complement number involves first identifying
whether the number is positive or negative by looking at the sign bit. If the number is positive (i.e., the
sign bit is 0), then the number is treated as an unsigned code and is converted to decimal using the
standard conversion procedure described in prior sections. If the number is negative (i.e., the sign bit is
1), then the number sign is recorded separately, and a two’s complement negation is performed on the
code in order to convert it to its positive magnitude equivalent. This new positive number is then
converted to decimal using the standard conversion procedure. The final step is to apply the sign.
Example 2.14 shows an example of this process on a negative number.

Example 2.13
Finding the range of a two’s complement number

Example 2.14
Finding the decimal value of a two’s complement number
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To convert a decimal number into its two’s complement code, the range is first checked to determine
whether the number can be represented with the allocated number of bits. The next step is to convert the
decimal number into unsigned binary. The final step is to apply the sign bit. If the original decimal number
was positive, then the conversion is complete. If the original decimal number was negative, then the
two’s complement is taken on the unsigned binary code to find its negative equivalent. Example 2.15
shows this procedure when converting �9910 to its 8-bit, two’s complement code.

Example 2.15
Finding the two’s complement code of a decimal number
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2.1.4.3 Arithmetic with Two’s Complement

Two’s complement has a variety of arithmetic advantages. First, the operations of addition, subtrac-
tion, and multiplication are handled exactly the same as when using unsigned numbers. This means that
duplicate circuitry is not needed in a system that uses both number types. Second, the ability to convert a
number from positive to its negative representation by performing a two’s complement means that
an adder circuit can be used for subtraction. For example, if we wanted to perform the subtraction
1310 – 410 ¼ 910, this is the same as performing 1310 þ (�410)¼ 910. This allows us to use a single adder
circuit to perform both addition and subtraction as long as we have the ability to take the two’s
complement of a number. Creating a circuit to perform two’s complement can be simpler and faster
than building a separate subtraction circuit, so this approach can sometimes be advantageous.

There are specific rules for performing two’s complement arithmetic that must be followed to ensure
proper results. First, any carry or borrow that is generated is ignored. The second rule that must be
followed is to always check if two’s complement overflow occurred. Two’s complement overflow refers to
when the result of the operation falls outside of the range of values that can be represented by the
number of bits being used. For example, if you are performing 8-bit, two’s complement addition, the
range of decimal values that can be represented is �12810 to þ12710. Having two input terms of 12710
(0111 11112) is perfectly legal because they can be represented by the 8 bits of the two’s complement
number; however, the summation of 12710 þ 12710 ¼ 25410 (111111102). This number does not fit within
the range of values that can be represented and is actually the two’s complement code for�210, which is
obviously incorrect. Two’s complement overflow occurs if any of the following occurs:

• The sum of like signs results in an answer with opposite sign (i.e., Positive þ Positive ¼
Negative or Negative þ Negative ¼ Positive).

• The subtraction of a positive number from a negative number results in a positive number (i.e.,
Negative � Positive ¼ Positive).

• The subtraction of a negative number from a positive number results in a negative number
(i.e., Positive � Negative ¼ Negative).

Computer systems that use two’s complement have a dedicated logic circuit that monitors for any of
these situations and lets the operator know that overflow has occurred. These circuits are straightforward
since they simply monitor the sign bits of the input and output codes. Example 2.16 shows how to use
two’s complement in order to perform subtraction using an addition operation.
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Example 2.16
Using two’s complement addition to perform subtraction
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CONCEPT CHECK

CC2.1.4 A 4-bit, two’s complement number has 16 unique codes and can represent decimal
numbers between �810 to þ710. If the number of unique codes is even, why is it that the range of
integers it can represent is not symmetrical about 0?

A) One of the positive codes is used to represent 0. This prevents the highest
positive number from reaching þ810 and being symmetrical.

B) It is asymmetrical because the system allows the numbers to roll over.

C) It isn’t asymmetrical if 0 is considered a positive integer. That way there are
eight positive numbers and eight negatives numbers.

D) It is asymmetrical because there are duplicate codes for 0.

2.2 Combinational Logic

The goal of this section is to provide an understanding of the basic principles of combinational logic
design. This includes basic logic functions, Boolean algebra, and common synthesis techniques. The
term combinational logic refers to circuits where the output depends on the present value(s) of the inputs.
This simple definition implies that there is no storage capability in the circuitry and a change on the input
immediately impacts the output.

2.2.1 Basic Gates

The term gate is used to describe a digital circuit that implements the most basic functions possible
on the binary number system. Said another way, the inputs to a basic gate are 0s and 1s and the output is
either a 0 or 1. When discussing the operation of a logic gate, we ignore the details of how the 1s and 0s
are represented with voltages or currents. We instead treat the inputs and output as simply ideal 1s and
0s. This allows us to design more complex logic circuits without going into the details of the underlying
physical hardware. We often use also use the terms TRUE and FALSE to describe logic states with a
TRUE being equivalent to a 1 and FALSE being equivalent to a 0.

There are three common ways to represent the functionality of a basic gate. The first is a unique
symbol, which can be used in schematics. The second is a truth table, in which all possible input values
are listed along with the associated output. The third way to represent the gate functionality is with a logic
expression, which provides a way to express the logic in equation form. Figure 2.6 gives the functionality
for the basic gates used in combinational logic.
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It should be noted that each of the 2-input logic operations can be expanded to have a larger number
of inputs. For an n-bit AND gate (where n > 2), the output is a logic 1 only when all of the inputs are 1s. A
NAND gate is always the inversion of the n-bit AND operation, regardless of the number of inputs.

For an n-bit OR gate (where n > 2), the output is a logic 1 when any of the inputs are a 1. A NOR gate
is always the inversion of the n-bit OR operation, regardless of the number of inputs.

Fig. 2.6
Basic gate functionality
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For an n-bit XOR gate (where n > 2), the functionality is created by cascading 2-input XOR gates.
This results in an output that is true when there is an ODD number of 1s on the inputs. This functionality is
much more useful in modern electronics for error correction codes and arithmetic. As such, this is the
functionality that is seen in modern n-bit, XOR gates. The 3-bit XOR functionality is also shown in
Fig. 2.7. An XNOR gate is always the inversion of the n-bit XOR operation, regardless of the number of
inputs.

CONCEPT CHECK

CC2.2.1 Given the following logic diagram, which is the correct logic expression for F?

A) F ¼ (A�B)0 � C

B) F ¼ (A0�B0) � C

C) F ¼ (A0�B0 � C)

D) F ¼ A�B0 � C

2.2.2 Boolean Algebra

The term algebra refers to the rules of a number system. Algebra defines the operations that are
legal to perform on a system. Once we have defined the rules for a system, we can then use the system
for more powerful mathematics such as solving for unknowns and manipulating into equivalent forms.
The ability to manipulate into equivalent forms allows us to minimize the number of logic operations
necessary and also put into a form that can be directly synthesized using modern logic circuits.

In 1854, English mathematician George Boole presented an abstract algebraic framework for a
system that contained only two states, true and false. This framework essentially launched the field of
computer science even before the existence of the modern integrated circuits that are used to implement

Fig. 2.7
3-input XOR gate implementation
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digital logic today. In 1930, American mathematician Claude Shannon applied Boole’s algebraic frame-
work to his work on switching circuits at Bell Labs, thus launching the field of digital circuit design and
information theory. Boole’s original framework is still used extensively in modern digital circuit design and
thus bears the name Boolean algebra. Today, the term Boolean algebra is often used to describe not only
George Boole’s original work but all of those that contributed to the field after him.

In Boolean algebra there are two valid states (true and false) and three core operations. The
operations are conjunction (^, equivalent to the AND operation), disjunction (_, equivalent to the OR
operation), and negation (Ø, equivalent to the NOT operation). From these three operations, more
sophisticated operations can be created including other logic functions (i.e., BUF, NAND, NOR, XOR,
and XNOR) and arithmetic. Engineers primarily use the terms AND, OR, and NOT instead of conjunction,
disjunction, and negation. Similarly, engineers primarily use the symbols for these operators described
in Chap. 3 (e.g. ∙, þ and 0) instead of ^, _, and Ø.

An axiom is a statement of truth about a system that is accepted by the user. Axioms are very simple
statements about a system but need to be established before more complicated theorems can be
proposed. Axioms are so basic that they do not need to be proved in order to be accepted. Axioms
can be thought of as the basic laws of the algebraic framework. The terms axiom and postulate are
synonymous and used interchangeably. In Boolean algebra there are five main axioms. These axioms
will appear redundant with the description of basic gates in Fig. 2.6 but must be defined in this algebraic
context so that more powerful theorems can be proposed.

This axiom states that in Boolean algebra, a variable A can only take on one of two values, 0 or 1. If
the variable A is not 0, then it must be a 1, and conversely, if it is not a 1, then it must be a 0.

Axiom #1 – Boolean Values A ¼ 0 if A 6¼ 1, conversely A ¼ 1 if A 6¼ 0.
This axiom defines logical negation. Negation is also called the NOT operation or taking the

complement. The negation operation is denoted using either a prime (0), an inversion bar, or the negation
symbol (Ø). If the complement is taken on a 0, it becomes a 1. If the complement is taken on a 1, it
becomes a 0.

Axiom #2 – Definition of Logical Negation if A ¼ 0 then A0 ¼ 1, conversely, if A ¼ 1 then A0 ¼ 0.
This axiom defines a logical product or multiplication. Logical multiplication is denoted using either a

dot (∙), an ampersand (&), or the conjunction symbol (^). The result of logical multiplication is true when
both inputs are true and false otherwise.

Axiom #3 – Definition of a Logical Product A∙B ¼ 1 if A ¼ B ¼ 1 and A∙B ¼ 0 otherwise.
This axiom defines a logical sum or addition. Logical addition is denoted using either a plus sign (þ)

or the disjunction symbol (_). The result of logical addition is true when any of the inputs are true and
false otherwise.

Axiom #4 – Definition of a Logical Sum A þ B ¼1 if A ¼ 1 or B ¼ 1 and A þ B ¼ 0 otherwise.
This axiom defines the order of precedence for the three operators. Unless the precedence is

explicitly stated using parentheses, negation takes precedence over a logical product and a logical
product takes precedence over a logical sum.

Axiom #5 – Definition of Logical Precedence NOT precedes AND, AND precedes OR.
To illustrate Axiom #5, consider the logic function F ¼ A0∙B þ C. In this function, the first operation

that would take place is the NOToperation on A. This would be followed by the AND operation of A0 with
B. Finally, the result would be OR’d with C. The precedence of any function can also be explicitly stated
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using parentheses such as F ¼ (((A0) ∙ B) þ C). In schematic form, the order of operation evaluated
moving from the inputs to the output of each gate.

A theorem is a more sophisticated truth about a system that is not intuitively obvious. Theorems are
proposed and then must be proved. Once proved, they can be accepted as a truth about the system
going forward. Proving a theorem in Boolean algebra is much simpler than in our traditional decimal
system due to the fact that variables can only take on one of two values, true or false. Since the number
of input possibilities is bounded, Boolean algebra theorems can be proved by simply testing the theorem
using every possible input code. This is called proof by exhaustion.

Table 2.3 gives a summary of the most common Boolean algebra theorems. The theorems are
grouped in this table with respect to the number of variables that they contain. For each theorem, the
original form in given in addition to the dual. Duality is its own theorem that says a logic expression will
remain true if all 1s and 0s are interchanged and all AND and OR operations are interchanged. The dual
provides an additional set of theorems for each original form.

CONCEPT CHECK

CC2.2.2 If the logic expression F ¼ A�B�C�D�E�F�G�H is implemented with only 2-input AND
gates, how many AND gates will it take? Hint: You can consider using the associative
property to manipulate the logic expression to use only 2-input AND operations, or,
you can sketch out a logic schematic using 2-input AND gates.

A) 4

B) 6

C) 7

D) 8

Table 2.3
Summary of Boolean algebra theorems
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2.2.3 Combinational Logic Synthesis

2.2.3.1 Canonical Sum of Products

One technique to directly synthesize a logic circuit from a truth table is to use a canonical sum of
products (SOP) topology based on minterms. The term canonical refers to this topology yielding
potentially unminimized logic. A minterm is a product term (i.e., an AND operation) that will be true for
one and only one input code. The minterm must contain every input variable in its expression.
Complements are applied to the input variables as necessary in order to produce a true output for the
individual input code. We define the word literal to describe an input variable which may or may not be
complemented. This is a more useful word because if we say that a minterm “must include all variables,”
it implies that all variables are included in the term uncomplemented. A more useful statement is that a
minterm “must include all literals.” This now implies that each variable must be included, but it can be in
the form of itself or its complement (e.g., A or A0). Figure 2.8 shows the definition and gate level depiction
of a minterm expression. Each minterm can be denoted using the lower case “m” with the row number as
a subscript.

For an arbitrary truth table, a minterm can be used for each row corresponding to a true output. If
each of these minterms’ outputs are fed into a single OR gate, then a sum of products logic circuit is
formed that will produce the logic listed in the truth table. In this topology, any input code that corresponds
to an output of 1 will cause its corresponding minterm to output a 1. Since a 1 on any input of an OR gate
will cause the output to go to a 1, the output of the minterm is passed to the final result. Example 2.17
shows this process. One important consideration of this approach is that no effort has been taken to
minimize the logic expression. This unminimized logic expression is also called the canonical sum. The
canonical sum is logically correct but uses the most amount of circuitry possible for a given truth table.
This canonical sum can be the starting point for minimization using Boolean algebra.

Fig. 2.8
Definition and gate level depiction of a minterm
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Example 2.17
Creating a canonical sum of products logic circuit using minterms
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Aminterm list is a compact way to describe the functionality of a logic circuit by simply listing the row
numbers that correspond to an output of 1 in the truth table. The ∑ symbol is used to denote a minterm
list. All input variables must be listed in the order they appear in the truth table. This is necessary because
since a minterm list uses only the row numbers to indicate which input codes result in an output of 1, the
minterm list must indicate how many variables comprise the row number, which variable is in the most
significant position, and which is in the least significant position. After the ∑ symbol, the row numbers
corresponding to a true output are listed in a comma-delimited format within parentheses. Example 2.18
shows the process for creating a minterm list from a truth table.

A minterm list contains the same information as the truth table, the canonical sum, and the canonical
sum of products logic diagram. Since the minterms themselves are formally defined for an input code, it
is trivial to go back and forth between the minterm list and these other forms. Example 2.19 shows how a
minterm list can be used to generate an equivalent truth table, canonical sum, and canonical sum of
products logic diagram.

Example 2.18
Creating a minterm list from a truth table
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2.2.3.2 Canonical Product of Sums

Another technique to directly synthesize a logic circuit from a truth table is to use a canonical product
of sums (POS) topology based onmaxterms. Amaxterm is a sum term (i.e., an OR operation) that will be
false for one and only one input code. The maxterm must contain every literal in its expression.
Complements are applied to the input variables as necessary in order to produce a false output for the
individual input code. Figure 2.9 shows the definition and gate level depiction of a maxterm expression.
Each maxterm can be denoted using the upper case “M” with the row number as a subscript.

Example 2.19
Creating equivalent functional representations from a minterm list
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For an arbitrary truth table, a maxterm can be used for each row corresponding to a false output. If
each of these maxterms outputs are fed into a single AND gate, then a product of sums logic circuit is
formed that will produce the logic listed in the truth table. In this topology, any input code that corresponds
to an output of 0 will cause its corresponding maxterm to output a 0. Since a 0 on any input of an AND
gate will cause the output to go to a 0, the output of the maxterm is passed to the final result. Example
2.20 shows this process. This approach is complementary to the sum of products approach. In the sum
of products approach based on minterms, the circuit operates by producing 1s that are passed to the
output for the rows that require a true output. For all other rows, the output is false. A product of sums
approach based on maxterms operates by producing 0s that are passed to the output for the rows that
require a false output. For all other rows, the output is true. These two approaches produce the
equivalent logic functionality. Again, at this point no effort has been taken to minimize the logic expres-
sion. This unminimized form is called a canonical product. The canonical product is logically correct but
uses the most amount of circuitry possible for a given truth table. This canonical product can be the
starting point for minimization using the Boolean algebra theorems.

Fig. 2.9
Definition and gate level depiction of a maxterm
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Example 2.20
Creating a product of sums logic circuit using maxterms
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Amaxterm list is a compact way to describe the functionality of a logic circuit by simply listing the row
numbers that correspond to an output of 0 in the truth table. The Π symbol is used to denote a maxterm
list. All literals used in the logic expression must be listed in the order they appear in the truth table. After
the Π symbol, the row numbers corresponding to a false output are listed in a comma-delimited format
within parentheses. Example 2.21 shows the process for creating a maxterm list from a truth table.

A maxterm list contains the same information as the truth table, the canonical product, and the
canonical product of sums logic diagram. Example 2.22 shows how a maxterm list can be used to
generate these equivalent forms.

Example 2.21
Creating a maxterm list from a truth table
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The examples in Examples 2.19 and 2.22 illustrate how minterm and maxterm lists produce the
exact same logic functionality but in a complementary fashion.

2.2.3.3 Logic Minimization in SOP Form

We now look at how to reduce the canonical expressions into equivalent forms that use less logic.
This minimization is key to reducing the complexity of the logic prior to implementing in real circuitry. This
reduces the number of gates needed, placement area, wiring, and power consumption of the logic circuit.

Example 2.22
Creating equivalent functional representations from a maxterm list
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One of the earliest ways to manually minimize a logic expression was using a Karnaugh map, or
K-map. A K-map is a graphical way to minimize logic expressions. This technique is named after Maurice
Karnaugh, American physicist, who introduced the map in its latest form in 1953 while working at Bell
Labs. The K-map is a way to put a truth table into a form that allows logic minimization through a
graphical process. This technique provides a graphical process that accomplishes the same result as
factoring variables via the distributive property and removing variables via the Complements and Identity
Theorems. K-maps present a truth table in a form that allows variables to be removed from the final logic
expression in a graphical manner.

A K-map is constructed as a two-dimensional grid. Each cell within the map corresponds to the
output for a specific input code. The cells are positioned such that neighboring cells only differ by one bit
in their input codes. Neighboring cells are defined as cells immediately adjacent horizontally and
immediately adjacent vertically. Two cells positioned diagonally next to each other are not considered
neighbors. The input codes for each variable are listed along the top and side of the K-map. Consider the
construction of a 2-input K-map shown in Fig. 2.10.

Fig. 2.10
Formation of a 2-input K-map
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When constructing a 3-input K-map, it is important to remember that each input code can only differ
from its neighbor by 1 bit. For example, the two codes 01 and 10 differ by two bits (i.e., the MSB is
different and the LSB is different); thus, they could not be neighbors; however, the codes 01-11 and 11-10
can be neighbors. As such, the input codes along the top of the 3-input K-map must be ordered
accordingly (i.e., 00-01-11-10). Consider the construction of a 3-input K-map shown in Fig. 2.11. The
rows and columns that correspond to the input literals can now span multiple rows and columns. Notice
how in this 3-input K-map, the literals A, A0, B, and B0 all correspond to two columns. Also, notice that B0

spans two columns, but the columns are on different edges of the K-map. The side edges of the 3-input
K-map are still considered neighbors because the input codes for these columns only differ by one bit.
This is an important attribute once we get to the minimization of variables because it allows us to
examine an input literal’s impact not only within the obvious adjacent cells but also when the variables
wrap around the edges of the K-map.

Fig. 2.11
Formation of a 3-input K-map
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When constructing a 4-input K-map, the same rules apply that the input codes can only differ from
their neighbors by one bit. Consider the construction of a 4-input K-map in Fig. 2.12. In a 4-input K-map,
neighboring cells can wrap around both the top-to-bottom edges in addition to the side-to-side edges.
Notice that all 16 cells are positioned within the map so that their neighbors on the top, bottom, and sides
only differ by one bit in their input codes.

Now we look at using a K-map to create a minimized logic expression in a SOP form. Remember
that each cell with an output of 1 has a minterm associated with it, just as in the truth table. When two
neighboring cells have outputs of 1, it graphically indicates that the two minterms can be reduced into a
minimized product term that will cover both outputs. Consider the example given in Fig. 2.13.

Fig. 2.12
Formation of a 4-input K-map
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These observations can be put into a formal process to produce a minimized SOP logic expression
using a K-map. The steps are as follows:

1. Circle groups of 1s in the K-map following the rules:

• Each circle should contain the largest number of 1s possible.

• The circles encompass only neighboring cells (i.e., side-to-side sides and/or top and
bottom).

• The circles must contain a number of 1s that is a power of 2 (i.e., 1, 2, 4, 8, or 16).

• Enter as many circles as possible without having any circles fully cover another circle.

• Each circle is called a prime implicant.

2. Create a product term for each prime implicant following the rules:

• Each variable in the K-map is evaluated one by one.

• If the circle covers a region where the input variable is a 1, then include it in the product
term uncomplemented.

Fig. 2.13
Observing how K-maps visually highlight logic minimizations
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• If the circle covers a region where the input variable is a 0, then include it in the product
term complemented.

• If the circle covers a region where the input variable is both a 0 and 1, then the variable is
excluded from the product term.

3. Sum all of the product terms for each prime implicant.

Let’s apply this approach to our 2-input K-map example. Example 2.23 shows the process of finding
a minimized sum of products logic expression for a 2-input logic circuit using a K-map. This process
yielded the same SOP expression as the algebraic minimization and observations shown in Fig. 2.13,
but with a formalized process.

Example 2.23
Using a K-map to find a minimized sum of products expression (2-input)
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Let’s now apply this process to our 3-input K-map example. Example 2.24 shows the process of
finding a minimized sum of products logic expression for a 3-input logic circuit using a K-map. This
example shows circles that overlap. This is legal as long as one circle does not fully encompass another.
Overlapping circles are common since the K-map process dictates that circles should be drawn that
group the largest number of 1s possible as long as they are in powers of 2. Forming groups of 1s using 1s
that have already been circled is perfectly legal to accomplish larger groupings. The larger the grouping
of 1s, the more chance there is for a variable to be excluded from the product term. This results in better
minimization of the logic.

Let’s now apply this process to our 4-input K-map example. Example 2.25 shows the process of
finding a minimized sum of products logic expression for a 4-input logic circuit using a K-map.

Example 2.24
Using a K-map to find a minimized sum of products expression (3-input)
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Example 2.25
Using a K-map to find a minimized sum of products expression (4-input)
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2.2.3.4 Logic Minimization in POS Form

K-maps can also be used to create minimized product of sums logic expressions. This is the same
concept as how a minterm list and maxterm list each produce the same logic function, but in comple-
mentary fashions. When creating a product of sums expression from a K-map, groups of 0s are circled.
For each circle, a sum term is derived with a negation of variables similar to when forming a maxterm
(i.e., in the input variable is a 0, then it is included uncomplemented in the sum term and vice versa). The
final step in forming the minimized POS expression is to AND all of the sum terms together. The formal
process is as follows:

1. Circle groups of 0s in the K-map following the rules:

• Each circle should contain the largest number of 0s possible.

• The circles encompass only neighboring cells (i.e., side-to-side sides and/or top and
bottom).

• The circles must contain a number of 0s that is a power of 2 (i.e., 1, 2, 4, 8, or 16).

• Enter as many circles as possible without having any circles fully cover another circle.

• Each circle is called a prime implicant.

2. Create a sum term for each prime implicant following the rules:

• Each variable in the K-map is evaluated one by one.

• If the circle covers a region where the input variable is a 1, then include it in the sum term
complemented.

• If the circle covers a region where the input variable is a 0, then include it in the sum term
uncomplemented.

• If the circles cover a region where the input variable is both a 0 and 1, then the variable is
excluded from the sum term.

3. Multiply all of the sum terms for each prime implicant.

Let’s apply this approach to our 2-input K-map example. Example 2.26 shows the process of finding
a minimized product of sums logic expression for a 2-input logic circuit using a K-map. Notice that this
process yielded the same logic expression as the SOP approach shown in Example 2.23. This illustrates
that both the POS and SOP expressions produce the correct logic for the circuit.
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Let’s now apply this process to our 3-input K-map example. Example 2.27 shows the process of
finding a minimized product of sums logic expression for a 3-input logic circuit using a K-map. Notice that
the logic expression in POS form is not identical to the SOP expression found in Example 2.24; however,
using a few steps of algebraic manipulation shows that the POS expression can be put into a form that is
identical to the prior SOP expression. This illustrates that both the POS and SOP produce equivalent
functionality for the circuit.

Example 2.26
Using a K-map to find a minimized product of sums expression (2-input)
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Let’s now apply this process to our 4-input K-map example. Example 2.28 shows the process of
finding a minimized product of sums logic expression for a 4-input logic circuit using a K-map.

Example 2.27
Using a K-map to find a minimized product of sums expression (3-input)

2.2 Combinational Logic • 51



Example 2.28
Using a K-map to find a minimized product of sums expression (4-input)
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2.2.3.5 Don’t Cares

There are often times when framing a design problem that there are specific input codes that require
exact output values, but there are other codes where the output value doesn’t matter. This can occur for
a variety of reasons, such as knowing that certain input codes will never occur due to the nature of the
problem or that the output of the circuit will only be used under certain input codes. We can take
advantage of this situation to produce a more minimal logic circuit. We define an output as a don’t
care when it doesn’t matter whether it is a 1 or 0 for the particular input code. The symbol for a don’t care
is “X.” We take advantage of don’t cares when performing logic minimization by treating them as
whatever output value will produce a minimal logic expression. Example 2.29 shows how to use this
process.

Example 2.29
Exploiting don’t cares in a K-map
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2.2.3.6 Identifying XOR Gates in K-maps

While Boolean algebra does not include the exclusive-OR and exclusive-NOR operations, XOR and
XNOR gates do indeed exist in modern electronics. They can be a useful tool to provide logic circuitry
with less operations, sometimes even compared to a minimal sum or product synthesized using the
techniques just described. An XOR can be used to replace a canonical SOP expression such as
F ¼ A0B þ AB0 ¼ A � B. An XNOR can be used to replace another canonical SOP expression such
as F¼A0B0 þ AB¼ (A� B)0. An XOR/XNOR operation can be identified by putting the values from a truth
table into a K-map. The XOR/XNOR operations will result in a characteristic checkerboard pattern in the
K-map. Consider the following patterns for XOR and XNOR gates in Figs. 2.14, 2.15, and 2.16. Anytime
these patterns are observed, it indicates an XOR/XNOR gate. To find the logic expression, it usually
involves writing out the canonical SOP and identifying groups of terms that can be replaced by
XOR/XNOR gates.

Fig. 2.14
XOR and XNOR checkerboard patterns observed in K-maps (2 input)

Fig. 2.15
XOR and XNOR checkerboard patterns observed in K-maps (3-input)
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Fig. 2.16
XOR and XNOR checkerboard pattern observed in K-maps (4-input)
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CONCEPT CHECK

CC2.2.3(a) All logic functions can be implemented equivalently using either a canonical sum of
products (SOP) or canonical product of sums (POS) topology. Which of these statements is true
with respect to selecting a topology that requires the least number of gates?

A) Since a minterm list and a maxterm list can both be written to describe the
same logic functionality, the number of gates in an SOP and POS will always
be the same.

B) If a minterm list has over half of its row numbers listed, an SOP topology will
require fewer gates than a POS.

C) A POS topology always requires more gates because it needs additional
logic to convert the inputs from positive to negative logic.

D) If a minterm list has over half of its row numbers listed, a POS topology will
require fewer gates than SOP.

CC2.2.3(b) Logic minimization is accomplished by removing variables from the original canoni-
cal logic expression that don’t impact the result. How does a Karnaugh map
graphically show what variables can be removed?

A) K-maps contain the same information as a truth table but the data is for-
matted as a grid. This allows variables to be removed by inspection.

B) K-maps rearrange a truth table so that adjacent cells have one and only one
input variable changing at a time. If adjacent cells have the same output
value when an input variable is both a 0 and a 1, that variable has no impact
on the interim result and can be eliminated.

C) K-maps list both the rows with outputs of 1s and 0s simultaneously. This
allows minimization to occur for a SOP and POS topology that each have the
same, but minimal, number of gates.

D) K-maps display the truth table information in a grid format, which is a more
compact way of presenting the behavior of a circuit.

2.2.4 MSI Logic

This section introduces a group of combinational logic building blocks that are commonly used in
digital design. As we move into systems that are larger than individual gates, there are naming
conventions that are used to describe the size of the logic. Table 2.4 gives these naming conventions.
In this chapter we will look at medium-scale integrated circuit (MSI) logic. Each of these building blocks
can be implemented using the combinational logic design steps covered in Chaps. 4 and 5. The goal of
this chapter is to provide an understanding of the basic principles of MSI logic.
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2.2.4.1 Decoders

A decoder is a circuit that takes in a binary code and has outputs that are asserted for specific values
of that code. The code can be of any type or size (e.g., unsigned, two’s complement). Each output will
assert for only specific input codes. Since combinational logic circuits only produce a single output, this
means that within a decoder, there will be a separate combinational logic circuit for each output.

A one-hot decoder is a circuit that has n inputs and 2n outputs. Each output will assert for one and
only one input code. Since there are 2n outputs, there will always be one and only one output asserted at
any given time. Example 2.30 shows the process of designing a 2-to-4 one-hot decoder by hand (i.e.,
using the classical digital design approach).

Table 2.4
Naming convention for the size of digital systems
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Another common decoder found in digital logic is a 7-segment display decoder. This decoder is a
circuit used to drive character displays that are commonly found in applications such as digital clocks and
household appliances. A character display is made up of seven individual LEDs, typically labeled a–g.
The input to the decoder is the binary equivalent of the decimal or hex character that is to be displayed.
The output of the decoder is the arrangement of LEDs that will form the character. Decoders with 2-inputs
can drive characters “0” to “3.” Decoders with 3-inputs can drive characters “0” to “7.” Decoders with
4-inputs can drive characters “0” to “F”with the case of the hex characters being “A, b, c or C, d, E, and F.”

Example 2.30
Design of a 2-to-4 one-hot decoder
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Let’s look at an example of how to design a 3-input, 7-segment decoder by hand. The first step in the
process is to create the truth table for the outputs that will drive the LEDs in the display. We’ll call these
outputs Fa, Fb, . . ., Fg. Example 2.31 shows how to construct the truth table for the 7-segment display
decoder. In this table, a logic 1 corresponds to the LED being ON.

If we wish to design this decoder by hand, we need to create seven separate combinational logic
circuits. Each of the outputs (Fa – Fg) can be put into a 3-input K-map to find the minimized logic
expression. Example 2.32 shows the design of the decoder from the truth table in Example 2.31.

Example 2.31
Design of a 7-segment display decoder: truth table

2.2 Combinational Logic • 59



Example 2.32
Design of a 7-segment display decoder: synthesis
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2.2.4.2 Encoders

An encoder works in the opposite manner as a decoder. An assertion on a specific input port
corresponds to a unique code on the output port. A one-hot binary encoder has n outputs and 2n inputs.
The output will be an n-bit, binary code which corresponds to an assertion on one and only one of the
inputs. Example 2.33 shows the process of designing a 4-to-2 binary encoder.

Example 2.33
Design of a 4-to-2 binary encoder
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2.2.4.3 Multiplexers

A multiplexer is a circuit that passes one of its multiple inputs to a single output based on a select
input. This can be thought of as a digital switch. The multiplexer has n select lines, 2n inputs, and one
output. Example 2.34 shows the process of designing a 2-to-1 multiplexer by hand (i.e., using the
classical digital design approach).

Example 2.34
Design of a 2-to-1 multiplexer
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2.2.4.4 Demultiplexers

A demultiplexer works in a complementary fashion to a multiplexer. A demultiplexer has one input
that is routed to one of its multiple outputs. The output that is active is dictated by a select input. A demux
has n select lines that chooses to route the input to one of its 2n outputs. When an output is not selected,
it outputs a logic 0. Example 2.35 shows the process of designing a 1-to-2 demultiplexer by hand (i.e.,
using the classical digital design approach).

2.2.4.5 Adders

Binary addition is performed in a similar manner to performing decimal addition by hand. The
addition begins in the least significant position of the number (p ¼ 0). The addition produces the sum
for this position. In the event that this positional sum cannot be represented by a single symbol, then the
higher-order symbol is carried to the subsequent position (p¼ 1). The addition in the next higher position

Example 2.35
Design of a 1-to-2 demultiplexer
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must include the number that was carried in from the lower positional sum. This process continues until
all of the symbols in the number have been operated on. The final positional sum can also produce a
carry, which needs to be accounted for in a separate system.

Designing a binary adder involves creating a combinational logic circuit to perform the positional
additions. Since a combinational logic circuit can only produce a scalar output, circuitry is needed to
produce the sum and the carry at each position. The binary adder size is predetermined and fixed prior to
implementing the logic (i.e., an n-bit adder). Both inputs to the adder must adhere to the fixed size,
regardless of their value. Smaller numbers simply contain leading 0s in their higher-order positions. For
an n-bit adder, the largest sum that can be produced will require n þ 1 bits. To illustrate this, consider a
4-bit adder. The largest numbers that the adder will operate on are 11112 þ 11112. (or 1510 þ 1510). The
result of this addition is 111102 (or 3010). Notice that the largest sum produced fits within 5 bits, or n þ 1.
When constructing an adder circuit, the sum is always recorded using n-bits with a separate carryout bit.
In our 4-bit example, the sum would be expressed as “1110” with a carryout. The carryout bit can be used
in multiple word additions, used as part of the number when being decoded for a display, or simply
discarded as in the case when using two’s complement numbers.

When creating an adder, it is desirable to design incremental sub-systems that can be reused. This
reduces design effort and minimizes troubleshooting complexity. The most basic component in the adder
is called a half adder. This circuit computes the sum and carryout on two input arguments. The reason it
is called a half adder instead of a full adder is because it does not accommodate a carry in during the
computation; thus, it does not provide all of the necessary functionality required for the positional adder.
Example 2.36 shows the design of a half adder. Notice that two combinational logic circuits are required
in order to produce the sum (the XOR gate) and the carryout (the AND gate). These two gates are in
parallel to each other; thus, the delay through the half adder is due to only one level of logic.

Example 2.36
Design of a half adder
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A full adder is a circuit that still produces a sum and carryout, but considers three inputs in the
computations (A, B, and Cin). Example 2.37 shows the design of a full adder.

As mentioned before, it is desirable to reuse design components as we construct more complex
systems. One such design reuse approach is to create a full adder using two half adders. This is
straightforward for the sum output since the logic is simply two cascaded XORgates (Sum¼A�B�Cin).
The carryout is not as straightforward. Notice that the expression for Cout derived in Example 2.37
contains the term (A þ B). If this term could be manipulated to use an XOR gate instead, it would allow
the full adder to take advantage of existing circuitry in the system. Figure 2.17 shows a derivation of an
equivalency that allows (A þ B) to be replaced with (A � B) in the Cout logic expression.

Example 2.37
Design of a full adder
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The ability to implement the carryout logic using the expression Cout¼ A�Bþ (A� B)�Cin allows us to
implement a full adder with two half adders and the addition of a single OR gate. Example 2.38 shows
this approach. In this new configuration, the sum is produced in two levels of logic while the carryout is
produced in three levels of logic.

Fig. 2.17
A useful equivalency that can be exploited in arithmetic circuits
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The full adder can now be used in the creation of multi-bit adders. The simplest architecture
exploiting the full adder is called a ripple carry adder (RCA). In this approach, full adders are used to
create the sum and carry out of each bit position. The carryout of each full adder is used as the carry in for
the next higher position. Since each subsequent full adder needs to wait for the carry to be produced by
the preceding stage, the carry is said to ripple through the circuit, thus giving this approach its name.
Example 2.39 shows how to design a 4-bit ripple carry adder using a chain of full adders. Notice that the
carry in for the full adder in position 0 is tied to a logic 0. The 0 input has no impact on the result of the sum
but enables a full adder to be used in the 0th position.

Example 2.38
Design of a full adder using two half adders
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2.2.4.6 Subtractors

Binary subtraction can be accomplished by building a dedicated circuit using a similar design
approach as just described for adders. A more effective approach is to take advantage of two’s
complement representation in order to reuse existing adder circuitry. Recall that taking the two’s
complement of a number will produce an equivalent magnitude number, but with the opposite sign
(i.e., positive to negative or negative to positive). This means that all that is required to create a subtractor
from an adder is to first take the two’s complement of the subtrahend input. Since the steps to take the
two’s complement of a number involve complementing each of the bits in the number and then adding
1, the logic required is relatively simple. Example 2.40 shows a 4-bit subtractor using full adders. The
subtrahend B is inverted prior to entering the full adders. Also, the carry in bit C0 is set to 1. This handles
the “adding 1” step of the two’s complement. All of the carries in the circuit are now treated as borrows
and the sum is now treated as the difference.

Example 2.39
Design of a 4-bit ripple carry adder (RCA)
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A programmable adder/subtractor can be created with the use of a programmable inverter and a
control signal. The control signal will selectively invert B and also change the C0 bit between a 0 (for
adding) and a 1 (for subtracting). Example 2.41 shows how an XOR gate can be used to create a
programmable inverter for use in a programmable adder/subtractor circuit.

Example 2.40
Design of a 4-bit subtractor using full adders

Example 2.41
Design of a programmable inverter using an XOR gate
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We can now define a control signal called (ADDn/SUB) that will control whether the circuit performs
addition or subtraction. Example 2.42 shows the architecture of a 4-bit programmable adder/subtractor.
It should be noted that this programmability adds another level of logic to the circuit, thus increasing
its delay.

CONCEPT CHECK

CC2.2.4(a) In a decoder, a logic expression is created for each output. Once all of the output
logic expressions are found, how can the decoder logic be further minimized?

A) By using K-maps to find the output logic expressions.

B) By buffering the inputs so that they can drive a large number of other
gates.

C) By identifying any logic terms that are used in multiple locations
(inversions, product terms, and sum terms) and sharing the interim results
among multiple circuits in the decoder.

D) By using a canonical product of sums (POS) architecture.

CC2.2.4(b) How many select lines are needed in a 1-to-64 demultiplexer?

A) 1

B) 4

C) 6

D) 64

Example 2.42
Design of a 4-bit programmable adder/subtractor
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CC2.2.4(c) Does a binary adder behave differently when it’s operating on unsigned vs. two’s
complement numbers? Why or why not?

A) Yes. The adder needs to keep track of the sign bit; thus, extra circuitry is
needed.

B) No. The binary addition is identical. It is up to the designer to handle how
the two’s complement codes are interpreted and whether two’s comple-
ment overflow occurred using a separate system.

2.3 Sequential Logic

In this section, we look at sequential logic design. Sequential logic design differs from combinational
logic design in that the outputs of the circuit depend not only on the current values of the inputs but also
on the past values of the inputs. This is different from the combinational logic design where the output of
the circuitry depends only on the current values of the inputs. The ability of a sequential logic circuit to
base its outputs on both the current and past inputs allows more sophisticated and intelligent systems to
be created. We begin by looking at sequential logic storage devices, which are used to hold the past
values of a system. This is followed by an investigation of timing considerations of sequential logic
circuits. Finally, we look at one of the most important logic circuits in digital systems, the finite state
machine. The goal of this section is to provide an understanding of the basic operation of sequential logic
circuits.

2.3.1 Sequential Logic Storage Devices

2.3.1.1 The Cross-Coupled Inverter Pair

The first thing that is needed in sequential logic is a storage device. The fundamental storage device
in sequential logic is based on a positive feedback configuration. Consider the circuit in Fig. 2.18. This
circuit configuration is called the cross-coupled inverter pair. In this circuit if the input of U1 starts with a
value of 1, it will produce an output of Q¼ 0. This output is fed back to the input of U2, thus producing an
output ofQn¼ 1. Qn is fed back to the original input of U1, thus reinforcing the initial condition. This circuit
will hold, or store, a logic 0 without being driven by any other inputs. This circuit operates in a
complementary manner when the initial value of U1 is a 0. With this input condition, the circuit will
store a logic 1 without being driven by any other inputs.

Fig. 2.18
Storage using a cross-coupled inverter pair
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The cross-coupled inverter pair in Fig. 2.18 exhibits what is called metastable behavior due to its
positive feedback configuration. Metastability refers to when a system can exist in a state of equilibrium
when undisturbed but can be moved to a different, more stable state of equilibrium when sufficiently
disturbed. Systems that exhibit high levels of metastability have an equilibrium state that is highly
unstable, meaning that if disturbed even slightly the system will move rapidly to a more stable point of
equilibrium. The cross-coupled inverter pair is a highly metastable system. This system actually contains
three equilibrium states. The first is when the input of U1 is exactly between a logic 0 and logic 1 (i.e.,
VCC/2). In this state, the output of U1 is also exactly VCC/2. This voltage is fed back to the input of U2, thus
producing an output of exactly VCC/2 on U2. This in turn is fed back to the original input on U1 reinforcing
the initial state. Despite this system being at equilibrium in this condition, this state is highly unstable.
With minimal disturbance to any of the nodes within the system, it will move rapidly to one of two more
stable states. The two stable states for this system are when Q ¼ 0 or when Q ¼ 1 (see Fig. 2.18). Once
the transition begins between the unstable equilibrium state toward one of the twomore stable states, the
positive feedback in the system continually reinforces the transition until the system reaches its final
state. In electrical systems, this initial disturbance is caused by the presence of noise, or unwanted
voltage in the system. Noise can come from many sources including random thermal motion of charge
carriers in the semiconductor materials, electromagnetic energy, or naturally occurring ionizing particles.
Noise is present in every electrical system so the cross-coupled inverter pair will never be able to stay in
the unstable equilibrium state where all nodes are at VCC/2. The cross-coupled inverter pair does
however have two highly stable states. Thus, this circuit is called a bistable element. The two stable
states are shown in Fig. 2.18 and allow the circuit to store either a 1 or a 0.

2.3.1.2 The SR Latch

While the cross-coupled inverter pair is the fundamental storage concept for sequential logic, there
is no mechanism to set the initial value of Q. All that is guaranteed is that the circuit will store a value in
one of two stable states (Q ¼ 0 or Q ¼ 1). The SR Latch provides a means to control the initial values in
this positive feedback configuration by replacing the inverters with NOR gates. In this circuit, S stands for
set and indicates when the output is forced to a logic 1 (Q¼ 1), and R stands for reset and indicates when
the output is forced to a logic 0 (Q¼ 0). When both S¼ 0 andR¼ 0, the SR Latch is put into a storemode
and it will hold the last value of Q. In all of these input conditions, Qn is the complement of Q. Consider
the behavior of the SR Latch during its store state shown in Fig. 2.19.
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The SR Latch has two input conditions that will force the outputs to known values. The first condition
is called the set state. In this state, the inputs are configured as S ¼ 1 and R¼ 0. This input condition will
force the outputs to Q ¼ 1 (e.g., setting Q) and Qn ¼ 0. The second input condition is called the reset
state. In this state the inputs are configured as S¼ 0 andR¼ 1. This input condition will force the outputs
to Q ¼ 0 (i.e., resetting Q) and Qn ¼ 1. Consider the behavior of the SR Latch during its set and reset
states shown in Fig. 2.20.

Fig. 2.19
SR Latch behavior – store state (S ¼ 0, R ¼ 0)
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The final input condition for the SR Latch leads to potential metastability and should be avoided.
When S¼ 1 and R¼ 1, the outputs of the SR Latch will both go to logic 0s. The problem with this state is
that if the inputs subsequently change to the store state (S¼ 0,R¼ 0), the outputs will go metastable and
then settle in one of the two stable states (Q ¼ 0 or Q ¼ 1). The reason this state is avoided is because
the final resting state of the SR Latch is random and unknown. Consider this operation shown in
Fig. 2.21.

Fig. 2.20
SR Latch behavior – set (S ¼ 1, R ¼ 0) and reset (S ¼ 0, R ¼ 1) states

Fig. 2.21
SR Latch behavior – don’t use state (S ¼ 1 and R ¼ 1)
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Figure 2.22 shows the final truth table for the SR Latch.

The SR Latch has some drawbacks when it comes to implementation with real circuitry. First, it takes
two independent inputs to control the outputs. Second, the state where S ¼ 1 and R ¼ 1 causes
problems when real propagation delays are considered through the gates. Since it is impossible to
match the delays exactly between U1 and U2, the SR Latch may occasionally enter this state and
experience momentary metastable behavior. In order to address these issues, a number of
improvements can be made to this circuit to create two of the most commonly used storage devices in
sequential logic, the D-Latch and the D-Flip-Flop. In order to understand the operation of these storage
devices, two incremental modifications are made to the SR Latch. The first is called the S0R0 Latch and
the second is the SR Latch with enable. These two circuits are rarely implemented and are only
explained to understand how the SR Latch is modified to create a D-Latch and ultimately a D-Flip-Flop.

2.3.1.3 The S0R0 Latch

The S0R0 Latch operates in a similar manner as the SR Latch with the exception that the input codes
corresponding to the store, set, and reset states are complemented. To accomplish this complementary
behavior, the S0R0 Latch is implemented with NAND gates configured in a positive feedback configura-
tion. In this configuration, the S0R0 Latch will store the last output when S0 ¼ 1,R0 ¼ 1. It will set the output
(Q ¼ 1) when S0 ¼ 0, R0 ¼ 1. Finally, it will reset the output (Q ¼ 0) when S0 ¼ 1, R0 ¼ 0. Consider the
behavior of the S0R0 Latch during its store state shown in Fig. 2.23.

Fig. 2.22
SR Latch truth table
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Just as with the SR Latch, the S0R0 Latch has two input configurations to control the values of the
outputs. Consider the behavior of the S0R0 Latch during its set and reset states shown in Fig. 2.24.

Fig. 2.24
S0R0 Latch behavior – set (S0 ¼ 0, R0 ¼ 1) and reset (S0 ¼ 1, R0 ¼ 0) states

Fig. 2.23
S0R0 Latch behavior – store state (S0 ¼ 1, R0 ¼ 1)
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And finally, just as with the SR Latch, the S0R0 Latch has a state that leads to potential metastability
and should be avoided. Consider the operation of the S0R0 Latch when the inputs are configured as
S0 ¼ 0 and R0 ¼ 0 shown in Fig. 2.25.

The final truth table for the S0R0 Latch is given in Fig. 2.26.

2.3.1.4 SR Latch with Enable

The next modification that is made in order to move toward a D-Latch and ultimately a D-Flip-Flop is
to add an enable line to the S0R0 Latch. The enable is implemented by adding two NAND gates on the
input stage of the S0R0 Latch. The SR Latch with enable is shown in Fig. 2.27. In this topology, the use of
NAND gates changes the polarity of the inputs, so this circuit once again has a set state where S ¼ 1,
R¼ 0 and a reset state of S¼ 0,R¼ 1. The enable line is labeledC, which stands for clock. The rationale
for this will be demonstrated upon moving through the explanation of the D-Latch.

Fig. 2.25
S0R0 Latch behavior – don’t use state (S0 ¼ 0 and R0 ¼ 0)

Fig. 2.26
S0R0 Latch truth table
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Recall that any time a 0 is present on one of the inputs to a NAND gate, the output will always be a
1 regardless of the value of the other inputs. In the SR Latch with enable configuration, any time C ¼ 0,
the outputs of U3 and U4 will be 1s and will be fed into the inputs of the cross-coupled NAND gate
configuration (U1 and U2). Recall that the cross-coupled configuration of U1 and U2 is an S0R0 Latch and
will be put into a store state when S0 ¼ 1 andR0 ¼ 1. This is the store state (C¼ 0). WhenC¼ 1, it has the
effect of inverting the values of the S and R inputs before they reach U1 and U2. This condition allows the
set state to be entered when S ¼ 1, R ¼ 0, C ¼ 1 and the reset state to be entered when S ¼ 0, R ¼ 1,
C ¼ 1. Consider this operation in Fig. 2.28.

Fig. 2.27
SR Latch with enable schematic
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Again, there is a potential metastable state when S ¼ 1, R ¼ 1 and C ¼ 1 that should be avoided.
There is also a second store state when S¼ 0, R¼ 0 and C¼ 1 that is not used because storage is to be
dictated by the C input.

Fig. 2.28
SR Latch with enable behavior – store, set, and reset
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2.3.1.5 The D-Latch

The SR Latch with enable can be modified to create a new storage device called a D-Latch. Instead
of having two separate input lines to control the outputs of the latch, the R input of the latch is instead
driven with an inverted version of the S input. This prevents the S and R inputs from ever being the same
value and removes the two “Don’t Use” states in the truth table shown in Fig. 2.27. The new, single input
is renamed D to stand for data. This new circuit still has the behavior that it will store the last value of Q
and Qn whenC¼ 0. WhenC¼ 1, the output will beQ¼ 1 whenD¼ 1 and will beQ¼ 0 when D¼ 0. The
behavior of the output when C¼ 1 is called tracking the input. The D-Latch schematic, symbol, and truth
table are given in Fig. 2.29.

The timing diagram for the D-Latch is shown in Fig. 2.30.

Fig. 2.29
D-Latch schematic, symbol, and truth table

Fig. 2.30
D-Latch timing diagram
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2.3.1.6 The D-Flip-Flop

The final and most widely used storage device in sequential logic is the D-Flip-Flop. The D-Flip-Flop
is similar in behavior to the D-Latch with the exception that the store mode is triggered by a transition, or
edge, on the clock signal instead of a level. This allows the D-Flip-Flop to implement higher frequency
systems since the outputs are updated in a shorter amount of time. The schematic, symbol, and truth
table are given in Fig. 2.31 for a rising edge triggered D-Flip-Flop. To indicate that the device is edge
sensitive, the input for the clock is designated with a “>”. The U3 inverter in this schematic creates the
rising edge behavior. If U3 is omitted, this circuit would be a negative edge triggered D-Flip-Flop.

The D-Flip-Flop schematic shown above is called a master/slave configuration because of how the
data is passed through the two D-Latches (U1 and U2). Due to the U4 inverter, the two D-Latches will
always be in complementary modes. When U1 is in hold mode, U2 will be in track mode and vice versa.
When the clock signal transitions HIGH, U1 will store the last value of data. During the time when the
clock is HIGH, U2 will enter track mode and pass this value to Q. In this way, the data is latched into the
storage device on the rising edge of the clock and is present on Q. This is the master operation of the
device because U1, or the first D-Latch, is holding the value, and the second D-Latch (the slave) is simply
passing this value to the output Q. When the clock transitions LOW, U2 will store the output of U1. Since
there is a finite delay through U1, the U2 D-Latch is able to store the value before U1 fully enters track
mode. U2 will drive Q for the duration of the time that the clock is LOW. This is the slave operation of the
device because U2, or the second D-Latch, is holding the value. During the time the clock is LOW, U1 is
in track mode, which passes the input data to the middle of the D-Flip-Flop preparing for the next rising
edge of the clock. The master/slave configuration creates a behavior where the Q output of the D-Flip-
Flop is only updated with the value of D on a rising edge of the clock. At all other times, Q holds the last
value of D. An example timing diagram for the operation of a rising edge D-Flip-Flop is given in Fig. 2.32.

Fig. 2.31
D-Flip-Flop (rising edge triggered) schematic, symbol, and truth table
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D-Flip-Flops often have additional signals that will set the initial conditions of the outputs that are
separate from the clock. A reset input is used to force the outputs toQ¼ 0,Qn¼ 1. A preset input is used
to force the outputs to Q ¼ 1, Qn ¼ 0. In most modern D-Flip-Flops, these inputs are active LOW,
meaning that the line is asserted when the input is a 0. Active LOW inputs are indicated by placing an
inversion bubble on the input pin of the symbol. These lines are typically asynchronous, meaning that
when they are asserted, action is immediately taken to alter the outputs. This is different from a
synchronous input in which action is only taken on the edge of the clock. Figure 2.33 shows the symbols
and truth tables for two D-Flip-Flop variants, one with an active LOW reset and another with both an
active LOW reset and active LOW preset.

Fig. 2.32
D-Flip-Flop (rising edge triggered) timing diagram
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D-Flip-Flops can also be created with an enable line. An enable line controls whether or not the
output is updated. Enable lines are synchronous, meaning that when they are asserted, the outputs will
be updated on the rising edge of the clock. When de-asserted, the outputs are not updated. This
behavior in effect ignores the clock input when de-asserted. Figure 2.34 shows the symbol and truth
table for a D-Flip-Flop with a synchronous enable.

There are a variety of timing specifications that need to be met in order to successfully design
circuits using sequential storage devices. The first specification is called the setup time (tsetup or ts). The
setup time specifies how long the data input needs to be at a steady state before the clock event. The
second specification is called the hold time (thold or th). The hold time specifies how long the data input
needs to be at a steady state after the clock event. If these specifications are violated (i.e., the input
transitions too close to the clock transition), the storage device will not be able to determine whether the
input was a 1 or 0 and will go metastable. The time a storage device will remain metastable is a
deterministic value and is specified by the part manufacturer (tmeta). In general, metastability should be
avoided; however, knowing the maximum duration of metastability for a storage device allows us to
design circuits to overcome potential metastable conditions. During the time the device is metastable,
the output will have random behavior. It may go to a steady state 1, a steady state 0, or toggle between a

Fig. 2.34
D-Flip-Flop with synchronous enable

Fig. 2.33
D-Flip-Flop with asynchronous reset and preset
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0 and 1 uncontrollably. Once the device comes out of metastability, it will come to rest in one of its two
stable states (Q ¼ 0 or Q ¼ 1). The final resting state is random and unknown. Another specification for
sequential storage devices is the delay from the time a clock transition occurs to the point that the data is
present on the Q output. This specification is called the Clock-to-Q delay and is given the notation tCQ.
These specifications are shown in Fig. 2.35.

The behavior of the D-Flip-Flop allows us to design systems that are synchronous to a clock signal.
A clock signal is a periodic square wave that dictates when events occur in a digital system.
A synchronous system based on D-Flip-Flops will allow the outputs of its storage devices to be updated
upon a rising edge of the clock. This is advantageous because when the Q outputs are storing values
they can be used as inputs for combinational logic circuits. Since combinational logic circuits contain a
certain amount of propagation delay before the final output is calculated, the D-Flip-Flop can hold the
inputs at a steady value while the output is generated. Since the input on a D-Flip-Flop is ignored during
all other times, the output of a combinational logic circuit can be fed back as an input to a D-Flip-Flop.
This gives a system the ability to generate outputs based on the current values of inputs in addition to
past values of the inputs that are being held on the outputs of D-Flip-Flops. This is the definition of
sequential logic. An example synchronous, sequential system is shown in Fig. 2.36.

Fig. 2.35
Sequential storage device timing specifications
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2.3.1.7 Registers

In modern digital systems, it is common to store data in groups. A group of signals is called a bus.
D-Flip-Flops can be put together to form an n-bit storage device known as a register. A register consists
of D-Flip-Flops each with their clock, EN, and reset lines tied together. The lines in the data bus are
connected to the individual D inputs of the D-Flip-Flop. In this way, a bus can be stored synchronously
when the register is enabled. Figure 2.37 shows an example of how to construct a 4-bit register.

Fig. 2.36
An example of synchronous system based on a D-Flip-Flop

Fig. 2.37
4-bit register
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CONCEPT CHECK

CC2.3.1 If the clock for a register is always running, how does the register avoid continuously
latching in data?

A) It does continuously latch in data. It just requires that the data is always
the same so that the outputs don’t change.

B) Each D-flip-flop in the register has an enable line that is used to control
when data is latched in.

C) The register requires the system to halt the clock when it is not in use.

D) The D input is disconnected when not in use.

2.3.2 Finite State Machines

Now we turn our attention to one of the most powerful sequential logic circuits, the finite state
machine (FSM). A FSM, or state machine, is a circuit that contains a predefined number of states (i.e., a
finite number of states). The machine can exist in one and only one state at a time. The circuit transitions
between states based on a triggering event, most commonly the edge of a clock, in addition to the values
of any inputs of the machine. The number of states and all possible transitions are predefined. Through
the use of states and a predefined sequence of transitions, the circuit is able to make decisions on the
next state to transition to based on a history of past states. This allows the circuit to create outputs that
are more intelligent compared to a simple combinational logic circuit that has outputs based only on the
current values of the inputs.

2.3.2.1 Describing the Functionality of a FSM

The design of a state machine begins with an abstract word description of the desired circuit
behavior. We will use a design example of a push-button motor controller to describe all of the steps
involved in creating a finite state machine. Example 2.43 starts the FSM design process by stating the
word description of the system.
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2.3.2.2 State Diagrams

A state diagram is a graphical way to describe the functionality of a finite state machine. A state
diagram is a form of a directed graph, in which each state (or vertex) within the system is denoted as a
circle and given a descriptive name. The names are written inside of the circles. The transitions between
states are denoted using arrows with the input conditions causing the transitions written next to them.
Transitions (or edges) can move to different states upon particular input conditions or remain in the same
state. For a state machine implemented using sequential logic storage, an evaluation of when to
transition states is triggered every time the storage devices update their outputs. For example, if the
system was implemented using rising edge triggered D-Flip-Flops, then an evaluation would occur on
every rising edge of the clock.

There are two different types of output conditions for a state machine. The first is when the output
only depends on the current state of the machine. This type of system is called aMoore machine. In this
case, the outputs of the system are written inside of the state circles. This indicates the output value that
will be generated for each specific state. The second output condition is when the outputs depend on
both the current state and the system inputs. This type of system is called aMealy machine. In this case,
the outputs of the system are written next to the state transitions corresponding to the appropriate input
values. Outputs in a state diagram are typically written inside of parentheses. Example 2.44 shows the
construction of the state diagram for our push-button window controller design.

Example 2.43
Push-button window controller – word description
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2.3.2.3 State Transition Tables

The state diagram can now be described in a table format that is similar to a truth table. This puts the
state machine behavior in a form that makes logic synthesis straightforward. The table contains the
same information as in the state diagram. The state that the machine exists in is called the current state.
For each current state that the machine can reside in, every possible input condition is listed along with
the destination state of each transition. The destination state for a transition is called the next state. Also
listed in the table are the outputs corresponding to each current state and, in the case of a Mealy
machine, the output corresponding to each input condition. Example 2.45 shows the construction of the
state transition table for the push-button window controller design. This information is identical to the
state diagram given in Example 2.44.

Example 2.44
Push-button window controller – state diagram
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2.3.2.4 Logic Synthesis for a FSM

Once the behavior of the state machine has been described, it can be directly synthesized. There
are three main components of a state machine: the state memory, the next state logic, and the output
logic. Figure 2.38 shows a block diagram of a state machine highlighting these three components. The
next state logic block is a group of combinational logic that produces the next state signals based on the
current state and any system inputs. The state memory holds the current state of the system. The current
state is updated with next state on every rising edge of the clock, which is indicated with the “>” symbol
within the block. This behavior is created using D-Flip-Flops where the current state is held on the
Q outputs of the D-Flip-Flops, while the next state is present on the D inputs of the D-Flip-Flops. In this
way, every rising edge of the clock will trigger an evaluation of which state to move to next. This decision
is based on the current state and the current inputs. The output logic block is a group of combinational
logic that creates the outputs of the system. This block always uses the current state as an input and,
depending on the type of machine (Mealy vs. Moore), uses the system inputs. It is useful to keep this
block diagram in mind when synthesizing finite state machines as it will aid in keeping the individual
design steps separate and clear.

Example 2.45
Push-button window controller – state transition table

Fig. 2.38
Main components of a finite state machine
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2.3.2.5 State Memory

The state memory is the circuitry that will hold the current state of the machine. Upon a rising edge of
a clock it will update the current state with the next state. At all other times, the next state input is ignored.
This gives time for the next state logic circuitry to compute the results for the next state. This behavior is
identical to that of a D-Flip-Flop; thus, the state memory is simply one or more D-Flip-Flops. The number
of D-Flip-Flops required depends on how the states are encoded. State encoding is the process of
assigning a binary value to the descriptive names of the states from the state diagram and state transition
tables. Once the descriptive names have been converted into representative codes using 1s and 0s, the
states can be implemented in real circuitry. The assignment of codes is arbitrary and can be selected in
order to minimize the circuitry needed in the machine.

There are three main styles of state encoding. The first is straight binary encoding. In this approach
the state codes are simply a set of binary counts (i.e., 00, 01, 10, 11. . .). The binary counts are assigned
starting at the beginning of the state diagram and incrementally assigned toward the end. This type of
encoding has the advantage that it is very efficient in minimizing the number of D-Flip-Flops needed for
the state memory. With n D-Flip-Flops, 2n states can be encoded. When a large number of states is
required, the number of D-Flip-Flops can be calculated using the rules of logarithmic math. Example 2.46
shows how to solve for the number of bits needed in the binary state code based on the number of states
in the machine.

Example 2.46
Finding the number of bits needed for binary state encoding
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The second type of state encoding is called gray code encoding. A gray code is one in which the
value of a code differs by only one bit from any of its neighbors, (i.e., 00, 01, 11, 10. . .). A gray code is
useful for reducing the number of bit transitions on the state codes when the machine has a transition
sequence that is linear. Reducing the number of bit transitions can reduce the amount of power
consumption and noise generated by the circuit. When the state transitions of a machine are highly
non-linear, a gray code encoding approach does not provide any benefit. Gray code is also an efficient
coding approach. With n D-Flip-Flops, 2n states can be encoded just as in binary encoding. Figure 2.39
shows the process of creating n-bit, gray code patterns.

The third common technique to encode states is using one-hot encoding. In this approach, a
separate D-Flip-Flop is asserted for each state in the machine. For an n-state machine, this encoding
approach requires n D-Flip-Flops. For example, if a machine had three states, the one-hot state codes
would be “001,” “010,” and “100.” This approach has the advantage that the next state logic circuitry is
very simple; further, there is less chance that the different propagation delays through the next state logic
will cause an inadvertent state to be entered. This approach is not as efficient as binary and gray code in
terms of minimizing the number of D-Flip-Flops because it requires one D-Flip-Flop for each state;
however, in modern digital integrated circuits that have abundant D-Flip-Flops, one-hot encoding is
commonly used.

Fig. 2.39
Creating an n-bit gray code pattern
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Figure 2.40 shows the differences between these three state encoding approaches.

Once the codes have been assigned to the state names, each of the bits within the code must be
given a unique signal name. The signal names are necessary because the individual bits within the state
code are going to be implemented with real circuitry, so each signal name will correspond to an actual
node in the logic diagram. These individual signal names are called state variables. Unique variable
names are needed for both the current state and next state signals. The current state variables are driven
by the Q outputs of the D-Flip-Flops holding the state codes. The next state variables are driven by the
next state logic circuitry and are connected to the D inputs of the D-Flip-Flops. State variable names are
commonly chosen that are descriptive both in terms of their purpose and connection location. For
example, current state variables are often given the names Q, Q_cur, or Q_current to indicate that
they come from the Q outputs of the D-Flip-Flops. Next state variables are given names such as Q*,
Q_nxt, or Q_next to indicate that they are the next value of Q and are connected to the D input of the
D-Flip-Flops. Once state codes and state variable names are assigned, the state transition table is
updated with the detailed information.

Returning to our push-button window controller example, let’s encode our states in straight binary
and use the state variable names of Q_cur and Q_nxt. Example 2.47 shows the process of state
encoding and the new state transition table.

Fig. 2.40
Comparison of different state encoding approaches
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2.3.2.6 Next State Logic

The next step in the state machine design is to synthesize the next state logic. The next state logic
will compute the values of the next state variables based on the current state and the system inputs.
Recall that a combinational logic function drives one and only one output bit. This means that every bit
within the next state code needs to have a dedicated combinational logic circuit. The state transition table
contains all of the necessary information to synthesize the next state logic including the exact output
values of each next state variable for each and every input combination of state code and system
input(s).

Example 2.47
Push-button window ocntroller – state encoding
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In our push-button window controller example, we only need to create one combinational logic
circuit because there is only one next state variable (Q_nxt). The inputs to the combinational logic circuit
are Q_cur and Press. Notice that the state transition table was created such that the order of the input
values is listed in a binary count just as in a formal truth table formation. This makes synthesizing the
combinational logic circuit straightforward. Example 2.48 shows the steps to synthesize the next state
logic for this the push-button window controller.

2.3.2.7 Output Logic

The next step in the state machine design is to synthesize the output logic. The output logic will
compute the values of the system outputs based on the current state and, in the case of a Mealy
machine, the system inputs. Each of the output signals will require a dedicated combinational logic
circuit. Again, the state transition table contains all of the necessary information to synthesize the output
logic.

In our push-button window controller example, we need to create one circuit to compute the output
“Open_CW” and one circuit to compute the output “Close_CCW.” In this example, the inputs to these
circuits are the current state (Q_cur) and the system input (Press). Example 2.49 shows the steps to
synthesize the output logic for the push-button window controller.

Example 2.48
Push-button window controller – next state logic
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2.3.2.8 The Final Logic Diagram

The final step in the design of the state machine is to create the logic diagram. It is useful to recall the
block diagram for a state machine from Fig. 2.38. A logic diagram begins by entering the state memory.
Recall that the state memory consists of D-Flip-Flops that hold the current state code. One D-Flip-Flop is
needed for every current state variable. When entering the D-Flip-Flops, it is useful to label them with the
current state variable they will be holding. The next part of the logic diagram is the next state logic. Each
of the combinational logic circuits that compute the next state variables should be drawn to the left of D-
Flip-Flop holding the corresponding current state variable. The output of each next state logic circuit is
connected to the D input of the corresponding D-Flip-Flop. Finally, the output logic is entered with the
inputs to the logic coming from the current state and potentially from the system inputs.

Example 2.50 shows the process for creating the final logic diagram for our push-button window
controller. Notice that the state memory is implemented with one D-Flip-Flop since there is only 1-bit in
the current state code (Q_cur). The next state logic is a combinational logic circuit that computes Q_nxt
based on the values of Q_cur and Press. Finally, the output logic consists of two separate combinational
logic circuits to compute the system outputs Open_CW and Close_CCW based on Q_cur and Press.
In this diagram the Qn output of the D-Flip-Flop could have been used for the inverted versions of Q_cur;
however, inversion bubbles were used instead in order to make the diagram more readable.

Example 2.49
Push-button window controller – output logic
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2.3.2.9 FSM Design Process Overview

The entire finite state machine design process is given in Fig. 2.41.

Example 2.50
Push-button window controller – logic diagram

Fig. 2.41
Finite state machine design flow
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2.3.2.10 FSM Design Example: Simple Control Unit

Let’s now look at another FSM design example and follow all of the steps from the prior section from
start to finish. In this example, we are going to design a simple control unit representative of the
functionality that exists within the central processing unit (CPU) of a computer. Example 2.51 provides
the word description, state diagram, and state transition table for this finite state machine.

Example 2.52 provides the state encoding, next state logic, and output logic synthesis for the simple
control unit FSM.

Example 2.51
FSM design for a simple control unit – problem description
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Example 2.53 shows the final logic diagram for the simple control unit FSM.

Example 2.52
FSM design for a simple control unit – synthesis steps
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2.3.2.11 FSM Design Example: 2-Bit Up Counter

A counter is a special type of finite state machine. A counter will traverse the states within a state
diagram in a linear fashion continually circling around all states. This behavior allows a special type of
output topology called state-encoded outputs. Since each state in the counter represents a unique
counter output, the states can be encoded with the associated counter output value. In this way, the
current state code of the machine can be used as the output of the entire system. Let’s consider the
design of a 2-bit binary up counter. The term up in this counter means that the counter will simply count in
an ascending order and repeat (i.e., 00 ! 01 ! 10 ! 11 ! 00. . .). Example 2.54 provides the word
description, state diagram, state transition table, and state encoding for this counter.

Example 2.53
FSM design for a simple control unit – final logic diagram
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Example 2.55 shows the next state and output logic synthesis, the final logic diagram, and resultant
representative timing diagram for the 2-bit binary up counter.

Example 2.54
FSM design for a 2-bit binary up counter (part 1)
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2.3.2.12 FSM Design Example: 2-Bit Binary Up/Down Counter

Let’s now consider a 2-bit binary up/down counter. In this type of counter, there is an input that
dictates whether the counter increments or decrements. This counter can still be implemented as a
Moore machine and use state-encoded outputs. Example 2.56 provides the word description, state
diagram, state transition table, and state encoding for this counter.

Example 2.55
FSM design for a 2-bit binary up counter (part 2)
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Example 2.56
FSM design for a 2-bit binary up/down counter (part 1)
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Example 2.57 shows the next state and output logic synthesis, the final logic diagram, and resultant
representative timing diagram for the 2-bit binary up/down counter.

Example 2.57
FSM design for a 2-bit binary up/down counter (part 2)
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CONCEPT CHECK

CC2.3.2 What allows a finite state machine to make more intelligent decisions about the system
outputs compared to combinational logic alone?

A) A finite state machine has knowledge about the past inputs.

B) The D-flip-flops allow the outputs to be generated more rapidly.

C) The next state and output logic allow the finite state machine to be more
complex and implement larger truth tables.

D) A synchronous system is always more intelligent.

2.4 Memory

This chapter introduces the basic concepts and terminology of semiconductor-based memory used
in computer systems. The term memory is used to describe a system with the ability to store digital
information; however, the usage of the word memory in computer systems refers to large, dense arrays
of storage. To achieve this increased density, different technologies and architectures are used that
differentiate memory storage from storage using registers. The different design approaches used in
memory typically result in slower performance and reduced functionality compared to storage using
registers but yield the large storage capacity needed to run software in modern computers.

The term semiconductor memory refers to systems that are implemented using integrated circuit
technology. These types of systems store the digital information using transistors, fuses, magnet
materials, and/or capacitors on a single semiconductor substrate. Memory can also be implemented
using technology other than semiconductors. Semiconductor memory does not have any moving parts,
so it is also referred to as solid state memory.Regardless of the technology used to store the binary data,
all memory has common attributes and terminology that are discussed in this section.

2.4.1 Memory Terminology

The information stored in memory is called data. When data is placed into memory, it is called a
write. When information is retrieved from memory, it is called a read. In order to access data in memory,
an address is used. While data can be accessed as individual bits, in order to reduce the number of
address locations needed, data is typically grouped into N-bit words. If a memory system has N ¼ 8, this
means that 8 bits of data are stored at each address. The number of address locations is described using
the variable M. The overall size of the memory is called its capacity and can be stated by saying M � N.
For example, if we had a 16 � 8 memory system, that means that there are 16 address locations, each
capable of storing 8 bits of data. This memory would have a capacity of 16� 8¼ 128 bits. We could also
say that this memory has a capacity of 16 bytes. Since the address is implemented as a binary code, the
number of lines in the address bus (n) will dictate the number of address locations that the memory
system will have (M ¼ 2n). Figure 2.42 shows a graphical depiction of how data resides in memory. This
type of graphic is called a memory map model.
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Memory is classified into two categories depending on whether it can store information when power
is removed or not. The term non-volatile is used to describe memory that holds information when the
power is removed, while the term volatile is used to describe memory that loses its information when
power is removed. Historically, volatile memory is able to run at faster speeds compared to non-volatile
memory, so it is used as the primary storage mechanism while a digital system is running. Non-volatile
memory is necessary in order to hold critical operation information for a digital system such as startup
instructions, operation systems, and applications.

Memory can also be classified into two categories with respect to how data is accessed. Read Only
Memory (ROM) is a device that cannot be written to during normal operation. This type of memory is
useful for holding critical system information or programs that should not be altered while the system is
running. Read/write (R/W) memory refers to memory that can be read and written to during normal
operation and is used to hold temporary data and variables.

Random Access Memory (RAM) describes memory in which any location in the system can be
accessed at any time. The opposite of this is sequential access memory, in which not all address
locations are immediately available. An example of a sequential access memory system is a tape
drive. In order to access the desired address in this system, the tape spool must be spun until the
address is in a position that can be observed. Most semiconductor memory in modern systems is
random access. The terms RAM and ROM have been adopted, somewhat inaccurately, to also describe
groups of memory with particular behavior. While the term ROM technically describes a system that
cannot be written to, it has taken on the additional association of being the term to describe non-volatile
memory. While the term RAM technically describes how data is accessed, it has taken on the additional
association of being the term to describe volatile memory. When describing modern memory systems,
the terms RAM and ROM are used most commonly to describe the characteristics of the memory being
used; however, modern memory systems can be both read/write and non-volatile, and the majority of
memory is random access.

CONCEPT CHECK

CC2.4.1 An 8-bit wide memory has 8 address lines. What is its capacity in bits?

A) 64

B) 256

C) 1024

D) 204

Fig. 2.42
Memory map model
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2.4.2 Memory Architecture

This section describes the basic architecture of a memory array. To begin, we will look at a simple
non-volatile ROM array. Figure 2.43 shows the basic architecture of a 4� 4 ROM. An address decoder is
used to access individual data words within the memory system. The address decoder asserts one and
only one word line (WL) for each unique binary address that is present on its input. This operation is
identical to a binary-to-one-hot decoder. For an n-bit address, the decoder can access 2n, or M words in
memory. The word lines historically run horizontally across the memory array; thus, they are often called
row lines and the word line decoder is often called the row decoder. Bit lines (BL) run perpendicular to the
word lines in order to provide individual bit storage access at the intersection of the bit and word lines.
These lines typically run vertically through the memory array; thus, they are often called column lines.
The output of the memory system (i.e., Data_Out) is obtained by providing an address and then reading
the word from buffered versions of the bit lines. When a system provides individual bit access to a row, or
access to multiple data words sharing a row line, a column decoder is used to route the appropriate bit
line(s) to the data out port.

Fig. 2.43
Basic architecture of Read Only Memory (ROM)
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In a traditional ROM array, each bit line contains a pull-up network to VCC. This provides the ability to
store a logic 1 at all locations within the array. If a logic 0 is desired at a particular location, an NMOS pull-
down transistor is inserted. The gate of the NMOS is connected to the appropriate word line and the drain
of the NMOS is connected to the bit line. When reading, the word line is asserted and turns on the NMOS
transistor. This pulls the bit line to GND and produces a logic 0 on the output. When the NMOS transistor
is excluded, the bit line remains at a logic 1 due to the pull-up network. Figure 2.44 shows the operation of
a ROM when information is being read from address “11.”

Fig. 2.44
ROM operation during a read
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Memory can be designed to be either asynchronous or synchronous. Asynchronous memory
updates its data outputs immediately upon receiving an address. Synchronous memory only updates
its data outputs on the rising edge of a clock. The term latency is used to describe the delay between
when a signal is sent to the memory (either the address in an asynchronous system or the clock in a
synchronous system) and when the data is available. Figure 2.45 shows a comparison of the timing
diagrams between asynchronous and synchronous ROM systems during a read cycle.

A R/Wmemory array is implemented in a similar manner as a ROM array; however, the storage cells
are implemented with technology that can be written to and read from during normal operation. This
means that circuitry must exist to be able to both retrieve information from the cells and drive data into the
cells. The most common storage cells in R/W memory require the data to be read/written using
differential signals. A differential signal is one that uses two wires to transmit the data, one with the
value of the data and the other with the complement. A differential line driverwith enable is used to create
the differential signal driven into the storage cell. A differential amplifier determines the value stored in
the cell during a read by taking the difference between the two lines. This allows the intended value to be
determined using lower voltage levels and also in the presence of increased noise. Figure 2.46 shows
the basic architecture of the R/W array.

Fig. 2.45
Asynchronous versus synchronous ROM operation during a read cycle
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CONCEPT CHECK

CC2.4.2(a) Which of the following is suitable for implementation in a read only memory?

A) Variables that a computer program needs to continuously update.

B) Information captured by a digital camera.

C) A computer program on a spacecraft.

D) Incoming digitized sound from a microphone.

CC2.4.2(b) Which of the following is suitable for implementation in a read/write memory?

A) A look up table containing the values of sine.

B) Information captured by a digital camera.

C) The boot up code for a computer.

D) A computer program on a spacecraft.

Fig. 2.46
Basic architecture of read/write memory (R/W)

2.4 Memory • 109



2.4.3 Memory Technologies

The primary difference between the semiconductor memory types used in computer systems is the
approach or technology used to create the storage cells. The storage cell technology dictates whether
the cells are volatile vs. non-volatile, ROM vs. R/W, the speed data can be accessed, and the power
consumed by the array.

2.4.3.1 Masked Read Only Memory (MROM)

A Masked Read Only Memory (MROM) is a non-volatile device that is programmed during fabrica-
tion. The term mask refers to a transparent plate that contains patterns to create the features of the
devices on an integrated circuit using a process called photolithography. An MROM is fabricated with all
of the features necessary for the memory device with the exception of the final connections between the
NMOS transistors and the word and bit lines. This allows the majority of the device to be created prior to
knowing what the final information to be stored is. Once the desired information to be stored is provided
by the customer, the fabrication process is completed by adding connections between certain NMOS
transistors and the word/bit lines in order to create logic 0s.

2.4.3.2 Programmable Read Only Memory (PROM)

A Programmable Read Only Memory (PROM) is created in a similar manner as an MROM except
that the programming is accomplished post-fabrication through the use of fuses or anti-fuses. A fuse is
an electrical connection that is normally conductive. When a certain amount of current is passed through
the fuse, it will melt and create an open circuit. The amount of current necessary to open the fuse is much
larger than the current the fuse would conduct during normal operation. An anti-fuse operates in the
opposite manner as a fuse. An anti-fuse is normally an open circuit. When a certain amount of current is
forced into the anti-fuse, the insulating material breaks down and creates a conduction path. This turns
the anti-fuse from an open circuit into a wire. Again, the amount of current necessary to close the anti-
fuse is much larger than the current the anti-fuse would experience during normal operation. A PROM
uses fuses or anti-fuses in order to connect/disconnect the NMOS transistors in the ROM array to the
word/bit lines. A PROM programmer is used to burn the fuses or anti-fuses. A PROM can only be
programmed once in this manner; thus, it is a read only memory and non-volatile. A PROM has the
advantage that programming can take place quickly as opposed to an MROM that must be programmed
through device fabrication.

2.4.3.3 Erasable Programmable Read Only Memory (EPROM)

As an improvement to the one-time programming characteristic of PROMs, an electrically program-
mable ROM with the ability to be erased with ultraviolet (UV) light was created. The Erasable Program-
mable Read Only Memory (EPROM) is based on a floating-gate transistor. In a floating-gate transistor,
an additional metal-oxide structure is added to the gate of an NMOS. This has the effect of increasing the
threshold voltage. The geometry of the second metal oxide is designed such that the threshold voltage is
high enough that normal CMOS logic levels are not able to turn the transistor on (i.e., VT1 � VCC). This
threshold can be changed by applying a large electric field across the two metal structures in the gate.
This causes charge to tunnel into the secondary oxide, ultimately changing it into a conductor. This
phenomenon is called Fowler–Nordheim tunneling. The new threshold voltage is low enough that normal
CMOS logic levels are not able to turn the transistors off (i.e., VT2 � GND). This process is how the
device is programmed. This process is accomplished using a dedicated programmer; thus, the EPROM
must be removed from its system to program. In order to change the floating-gate transistor back into its
normal state, the device is exposed to a strong ultraviolet light source. When the UV light strikes the
trapped charge in the secondary oxide, it transfers enough energy to the charge particles that they can
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move back into the metal plates in the gate. This, in effect, erases the device and restores it back to a
state with a high threshold voltage. EPROMs contain a transparent window on the top of their package
that allows the UV light to strike the devices. The EPROM must be removed from its system to perform
the erase procedure. When the UV light erase procedure is performed, every device in the memory array
is erased. EPROMs are a significant improvement over PROMs because they can be programmed
multiple times; however, the programming and erase procedures are manually intensive and require an
external programmer and external eraser.

2.4.3.4 Electrically Erasable Programmable Read Only Memory (EEPROM)

In order to address the inconvenient programming and erasing procedures associated with
EPROMs, the Electrically Erasable Programmable ROM (EEPROM) was created. In this type of circuit,
the floating-gate transistor is erased by applying a large electric field across the secondary oxide. This
electric field provides the energy to move the trapped charge from the secondary oxide back into the
metal plates of the gate. The advantage of this approach is that the circuitry to provide the large electric
field can be generated using circuitry on the same substrate as the memory array, thus eliminating the
need for an external UV light eraser. In addition, since the circuitry exists to generate large on-chip
voltages, the device can also be programmed without the need for an external programmer. This allows
an EEPROM to be programmed and erased while it resides in its target environment. Early EEPROMs
were very slow and had a limited number of program/erase cycles; thus, they were classified into the
category of non-volatile, Read Only Memory. Modern floating-gate transistors are now capable of access
times on scale with other volatile memory systems; thus, they have evolved into one of the few
non-volatile, read/write memory technologies used in computer systems today. Almost all modern
microcontrollers, including the MSP430, include on-chip EEPROM to hold their programs.

2.4.3.5 FLASH Memory

One of the early drawbacks of EEPROM was that the circuitry that provided the capability to
program and erase individual bits also added to the size of each individual storage element. FLASH
EEPROM was a technology that attempted to improve the density of floating-gate memory by program-
ming and erasing in large groups of data, known as blocks. This allowed the individual storage cells to
shrink and provided higher-density memory parts. This new architecture was called NAND FLASH and
provided faster write and erase times coupled with higher-density storage elements. The limitation of
NAND FLASH was that reading and writing could only be accomplished in a block-by-block basis. This
characteristic precluded the use of NAND FLASH for run-time variables and data storage but was well
suited for streaming applications such as audio/video and program loading. As NAND FLASH technol-
ogy advanced, the block size began to shrink, and software adapted to accommodate the block-by-block
data access. This expanded the applications that NAND FLASH could be deployed in. Today, NAND
FLASH memory is used in nearly all portable devices (e.g., smart phones and tablets), and its use in
solid-state hard drives is on pace to replace hard disk drives and optical disks as the primary non-volatile
storage medium in modern computers.

In order to provide individual word access, NOR FLASH was introduced. In NOR FLASH, circuitry is
added to provide individual access to data words. This architecture provided faster read times than
NAND FLASH, but the additional circuitry causes the write and erase times to be slower and the
individual storage cell size to be larger. Due to NAND FLASH having faster write times and higher
density, it is seeing broader scale adoption compared to NOR FLASH despite only being able to access
information in blocks. NOR FLASH is considered random access memory while NAND FLASH is
typically not; however, as the block size of NAND FLASH is continually reduced, its use for variable
storage is becoming more attractive. All FLASH memory is non-volatile and read/write.

2.4 Memory • 111



2.4.3.6 Static Random Access Memory (SRAM)

Static Random Access Memory (SRAM) is a semiconductor technology that stores information
using a cross-coupled inverter feedback loop. Figure 2.47 shows the schematic for the basic SRAM
storage cell. In this configuration, two access transistors (M1 and M2) are used to read and write from the
storage cell. The cell has two complementary ports called bit line (BL) and bit line’ (BLn). Due to the
inverting functionality of the feedback loop, these two ports will always be the complement of each other.
This behavior is advantageous because the two lines can be compared to each other to determine the
data value. This allows the voltage levels used in the cell to be lowered while still being able to detect the
stored data value. Word lines are used to control the access transistors. This storage element takes six
CMOS transistors to implement and is often called a 6Tconfiguration. The advantage of this memory cell
is that it has very fast performance compared to other sub-systems because of its underlying technology
being simple CMOS transistors. SRAM is volatile memory because when the power is removed, the
cross-coupled inverters are not able to drive the feedback loop and the data is lost. SRAM is also read/
write memory because the storage cells can be easily read from or written to during normal operation.
SRAM cells are commonly implemented on the same IC substrate as the rest of the system, thus
allowing a fully integrated system to be realized. SRAM cells are used for cache memory in computer
systems.

2.4.3.7 Dynamic Random Access Memory (DRAM)

Dynamic Random Access Memory (DRAM) is a semiconductor technology that stores information
using a capacitor. A capacitor is a fundamental electrical device that stores charge. Figure 2.48 shows
the schematic for the basic DRAM storage cell. The capacitor is accessed through a transistor (M1).
Since this storage element takes one transistor and one capacitor, it is often referred to as a 1T1C
configuration. Just as in SRAM memory, word lines are used to access the storage elements. The term
digit line is used to describe the vertical connection to the storage cells.

Fig. 2.47
SRAM storage cell

Fig. 2.48
DRAM storage cell
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DRAM has an advantage over SRAM in that the storage element requires less area to implement.
This allows DRAM memory to have much higher density compared to SRAM; however, there are a
variety of architecture issues that cause DRAM to be slower than SRAM. First, the storage capacitors are
non-ideal so they continually leak charge and ultimately lose the digital value they are storing. As a result,
DRAM cells need to be continually refreshed (i.e., writing the same values to the array), in order to
maintain their integrity. Next, when the storage capacitor is storing a one, or VCC, the threshold voltage
needed to turn on the access transistor needs to be higher than VCC (i.e., VCC þ VT). This means that a
voltage is required for the word line that is higher than the power supply. A charge pump system is used
in DRAMs in order to build up a voltage higher than VCC to access the storage cells. This pumping takes
additional time, which slows down the performance of the array. Finally, since the storage cell is a
capacitor and not an active device, when reading from the cell it does not have the ability to drive the digit
line to a full VCC or GND. Instead, the charge in the capacitor is distributed across capacitance of the digit
line. This charge sharing reduces the actual voltage that develops on the digit line. This necessitates
amplifiers to be used in order to boost voltage on the digit line so that it can be read by a digital receiver.
All of these considerations makes DRAM slightly slower and more complex than SRAM. Modern DRAM
contain all of the necessary circuitry within the same package as the storage array so much of this
complexity is abstracted from the user.

2.4.3.8 Ferroelectric Random Access Memory (FRAM)

One of the newest memory technologies within the semiconductor industry is Ferroelectric Random
Access Memory (FRAM). FRAM is very similar to DRAM in its architecture; however, instead of using a
traditional capacitor as its storage element, it uses a ferroelectric capacitor. In a traditional capacitor, two
metal plates are separated by a dielectric material. When an external electric field is applied to the
capacitor, the charge in the dielectric material is polarized or aligns to the direction of the electric field.
Once the external electric field is removed, the material depolarizes back to its normal state. In a
ferroelectric capacitor, the dielectric is replaced with a ferroelectric material. The ferroelectric material
has magnetic properties that give it hysteresis, or the characteristic that once the charge in the material is
polarized by an external electric field, the material remains polarized after the electric field is removed.
This gives the capacitor the ability to be both read/write and non-volatile. FRAM has the advantage that it
achieves the higher density of DRAM, but is non-volatile; however, current FRAM technology tends to be
slower than DRAM. Figure 2.49 shows the schematic for the basic FRAM storage cell.

Fig. 2.49
FRAM storage cell
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CONCEPT CHECK

CC2.4.3 Memory arrays tend to follow a very similar architecture. What is the primary difference
between the memory technologies?

A) The approached used to implement the storage cell.

B) Where they are manufactured.

C) The number of engineers needed to design them.

D) The number of companies making them.

Summary

v The base, or radix, of a number system refers
to the number of unique symbols within its
set. The definition of a number system
includes both the symbols used and the rela-
tive values of each symbol within the set.

v A positional number system allows larger
(or smaller) numbers to be represented
beyond the values within the original symbol
set. This is accomplished by having each
position within a number have a different
weight.

v There are specific algorithms that are used to
convert any base to or from decimal. There
are also algorithms to convert between num-
ber systems that contain a power-of-two
symbols (e.g., binary to hexadecimal and
hexadecimal to binary).

v Binary arithmetic is performed on a fixed
width of bits (n). When an n-bit addition
results in a sum that cannot fit within n-bits,
it generates a carryout bit. In an n-bit subtrac-
tion, if the minuend is smaller than the sub-
trahend, a borrow in can be used to complete
the operation.

v Binary codes can represent both unsigned
and signed numbers. For an arbitrary n-bit
binary code, it is important to know the
encoding technique and the range of values
that can be represented.

v Signed numbers use the most significant
position to represent whether the number is
negative (0 ¼ positive, 1 ¼ negative). The
width of a signed number is always fixed.

v Two’s complement is the most common
encoding technique for signed numbers. It
has an advantage that there are no duplicate

codes for 0 and that the encoding approach
provides a monotonic progression of codes
from the most negative number that can be
represented to the most positive. This allows
addition and subtraction to work the same on
two’s complement numbers as it does on
unsigned numbers.

v Logic gates represent the most basic
operations that can be performed on binary
numbers. They are BUF, INV, AND, NAND,
OR, NOR, XOR, and XNOR.

v Boolean algebra defines the axioms and
theorems that guide the operations that can
be performed on a two-valued number
system.

v The canonical form of a logic expression is
one that has not been minimized.

v A canonical sum of products form is a logic
synthesis technique based on minterms. A
minterm is a product term that will output a
one for only one unique input code. A
minterm is used for each row of a truth table
corresponding to an output of a one. Each of
the minterms is then summed together to
create the final system output.

v A minterm list is a shorthand way of describ-
ing the information in a truth table. The sym-
bol “Σ” is used to denote a minterm list. Each
of the input variables is added to this symbol
as comma-delimited subscripts. The row
number is then listed for each row
corresponding to an output of a one.

v A canonical product of sums form is a logic
synthesis technique based on maxterms. A
maxterm is a sum term that will output a 0 for
only one unique input code. A maxterm is

114 • Chapter 2: Digital Logic Basics



used for each row of a truth table
corresponding to an output of a 0. Each of
the maxterms is then multiplied together to
create the final system output.

v Amaxterm list is a shorthand way of describ-
ing the information in a truth table. The sym-
bol “Π” is used to denote a maxterm list. Each
of the input variables is added to this symbol
as comma-delimited subscripts. The row
number is then listed for each row
corresponding to an output of a 0.

v A Karnaugh map (K-map) is a graphical
approach to minimizing logic expressions. A
K-map arranges a truth table into a grid in
which the neighboring cells have input codes
that differ by only one bit. This allows the
impact of an input variable on a group of
outputs to be quickly identified.

v A don’t care (X) can be used when the output
of a truth table row can be either a 0 or a
1 without affecting the system behavior. This
typically occurs when some of the input
codes of a truth table will never occur. The
value for the row of a truth table containing a
don’t care output can be chosen to give the
most minimal logic expression. In a K-map,
don’t cares can be included to form the larg-
est groupings in order to give the least
amount of logic.

v While exclusive-OR gates are not used in
Boolean algebra, they can be visually
identified in K-maps by looking for checker-
board patterns.

v The term medium-scale integrated circuit
(MSI) logic refers to a set of basic combina-
tional logic circuits that implement simple,
commonly used functions such as decoders,
encoders, multiplexers, and demultiplexers.
MSI logic can also include operations such
as comparators and simple arithmetic
circuits.

v Sequential logic refers to a circuit that bases
its outputs on both the present and past
values of the inputs. Past values are held in
sequential logic storage device.

v All sequential logic storage devices are
based on a cross-coupled feedback loop.
The positive feedback loop formed in this
configuration will hold either a 1 or a 0. This
is known as a bistable device.

v A D-Flip-Flop will update its Q output with the
value on its D input on every triggering edge
of a clock. The amount of time that it takes for
the Q output to update after a triggering clock
edge is called the “t-clock-to-Q” (tCQ)
specification.

v A register is a group of D-Flip-Flops that all
share the same clock and store groups of
data lines called a bus.

v A synchronous system is one in which all
logic transitions occur based on a single
timing event. The timing event is typically
the triggering edge of a clock.

v A finite state machine (FSM) is a system that
produces outputs based on the current value
of the inputs and a history of past inputs. The
history of inputs is recorded as states that the
machine has been in. As the machine
responds to new inputs, it transitions
between states. This allows a finite state
machine to make more sophisticated
decisions about what outputs to produce by
knowing its history.

v A counter is a special type of finite state
machine in which the states are traversed
linearly. The linear progression of states
allows the next state logic to be simplified.
The complexity of the output logic in a counter
can also be reduced by encoding the states
with the desired counter output for that state.
This technique, known as state-encoded
outputs, allows the system outputs to simply
be the current state of the FSM.

v The term memory refers to large arrays of
digital storage. The technology used in mem-
ory is typically optimized for storage density
at the expense of control capability. This is
different from a D-Flip-Flop, which is
optimized for complete control at the bit level.

v A memory device always contains an
address bus input. The number of bits in the
address bus dictates how many storage
locations can be accessed. An n-bit address
bus can access 2n (or M) storage locations.

v The width of each storage location (N) allows
the density of the memory array to be
increased by reading and writing vectors of
data instead of individual bits.

v A memory map is a graphical depiction of a
memory array. A memory map is useful to
give an overview of the capacity of the array
and how different address ranges of the array
are used.

v Volatile memory will lose its data when the
power is removed. Non-volatile memory will
retain its data when the power is removed.

v Read Only Memory (ROM) is a memory type
that cannot be written to during normal oper-
ation. Read/Write (R/W) memory is a mem-
ory type that can be written to during normal
operation. Both ROM and R/W memory can
be read from during normal operation.
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v Random Access Memory (RAM) is a memory
type in which any location in memory can be
accessed at any time. In Sequential Access
Memory the data can only be retrieved in a
linear sequence. This means that in sequen-
tial memory the data cannot be accessed
arbitrarily.

v Memory technologies differ in the way that
they store the digital values. The technology
used dictates whether the memory is R/W or
ROM, volatile or non-volatile, and its
performance.

Exercise Problems

Section 2.1: Number Systems
2.1.1 For the number 261.367, what position (p) is

the number 2 in?

2.1.2 For the number 261.367, what position (p) is
the number 3 in?

2.1.3 What is the name of the number system
containing 102?

2.1.4 What is the name of the number system
containing 1016?

2.1.5 Which of the three number systems covered in
this chapter (i.e., binary, decimal, and hexa-
decimal) could the number 22 be part of?
Give all that are possible.

2.1.6 If the number 101.111 has a radix of 2, what is
the weight of the position containing the left-
most 1?

2.1.7 If the number 101.111 has a radix of 2, what is
the weight of the position containing the right-
most 1?

2.1.8 Convert 11 11112 to decimal. Treat all numbers
as unsigned.

2.1.9 Convert 11.012 to decimal. Provide the full
answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.1.10 Convert F316 to decimal. Treat all numbers as
unsigned.

2.1.11 Convert EE.0F16 to decimal. Provide the full
answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.1.12 Convert 6710 to binary. Treat all numbers as
unsigned.

2.1.13 Convert 1.437510 to binary. Provide the full
answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.1.14 Convert 6710 to hexadecimal. Treat all num-
bers as unsigned.

2.1.15 Convert 10.664062510 to hexadecimal. Pro-
vide the full answer without limiting its accuracy
or rounding. Treat all numbers as unsigned.

2.1.16 Compute 10102 þ 10112 by hand. Treat all
numbers as unsigned. Provide the 4-bit sum
and indicate whether a carryout occurred.

2.1.17 Compute 1111 11112 þ 0000 00012 by hand.
Treat all numbers as unsigned. Provide the
8-bit sum and indicate whether a carryout
occurred.

2.1.18 Compute 10102� 10112 by hand. Treat all num-
bers as unsigned. Provide the 4-bit difference
and indicate whether a borrow in occurred.

2.1.19 Compute 1111 11112 � 0000 00012 by hand.
Treat all numbers as unsigned. Provide the
8-bit difference and indicate whether a borrow
in occurred.

2.1.20 What range of decimal numbers can be
represented by 8-bit, two’s complement
numbers?

2.1.21 What range of decimal numbers can be
represented by 16-bit, two’s complement
numbers?

2.1.22 What is the 8-bit, two’s complement code for
þ8810?

2.1.23 What is the 8-bit, two’s complement code for
�8810?

2.1.24 What is the decimal value of the 4-bit, two’s
complement code 00102?

2.1.25 What is the decimal value of the 8-bit, two’s
complement code 1111 11102?

2.1.26 Compute 11102 þ 10112 by hand. Treat all
numbers as 4-bit, two’s complement codes.
Provide the 4-bit sum and indicate whether
two’s complement overflow occurred.

2.1.27 Compute110111112þ000000012byhand.Treat
all numbers as 8-bit, two’s complement codes.
Provide the 8-bit sum and indicate whether two’s
complement overflow occurred.

Section 2.2: Combinational Logic
2.2.1 For the 3-input truth table in Fig. 2.50, give the

canonical sum of products (SOP) logic expres-
sion.

Fig. 2.50
Combinational logic synthesis (1)
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2.2.2 For the 3-input truth table in Fig. 2.50, give the
canonical sum of products (SOP) logic
diagram.

2.2.3 For the 3-input truth table in Fig. 2.50, give the
minterm list.

2.2.4 For the 3-input truth table in Fig. 2.50, give the
canonical product of sums (POS) logic
expression.

2.2.5 For the 3-input truth table in Fig. 2.50, give the
canonical product of sums (POS) logic
diagram.

2.2.6 For the 3-input truth table in Fig. 2.50, give the
maxterm list.

2.2.7 For the 3-input truth table in Fig. 2.51, give the
canonical sum of products (SOP) logic expres-
sion.

Fig. 2.51
Combinational logic synthesis (2)

2.2.8 For the 3-input truth table in Fig. 2.51, give the
canonical sum of products (SOP) logic
diagram.

2.2.9 For the 3-input truth table in Fig. 2.51, give the
minterm list.

2.2.10 For the 3-input truth table in Fig. 2.51, give the
canonical product of sums (POS) logic
expression.

2.2.11 For the 3-input truth table in Fig. 2.51, give the
canonical product of sums (POS) logic
diagram.

2.2.12 For the 3-input truth table in Fig. 2.51, give the
maxterm list.

2.2.13 For the 3-input truth table in Fig. 2.50, give the
minimized sum of products (SOP) logic
expression.

2.2.14 For the 3-input truth table in Fig. 2.50, give the
minimized product of sums (POS) logic
expression.

2.2.15 For the 3-input truth table in Fig. 2.51, give the
minimized sum of products (SOP) logic
expression.

2.2.16 For the 3-input truth table in Fig. 2.51, give the
minimized product of sums (POS) logic
expression.

2.2.17 Design a 4-to-16 one-hot decoder by hand.
The block diagram and truth table for the
decoder are given in Fig. 2.52. Give the
minimized logic expressions for each output
(i.e., F0, F1, . . ., F15) and the full logic diagram
for the system.

Fig. 2.52
4-to-16 one-hot decoder functionality

2.2.18 Design an 8-to-3 binary encoder by hand. The
block diagram and truth table for the encoder
are given in Fig. 2.53. Give the logic
expressions for each output and the full logic
diagram for the system.

Fig. 2.53
8-to-3 one-hot encoder functionality
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2.2.19 Design an 8-to-1 multiplexer by hand. The
block diagram and truth table for the multi-
plexer are given in Fig. 2.54. Give the
minimized logic expressions for the output
and the full logic diagram for the system.

Fig. 2.54
8-to1 multiplexer functionality

2.2.20 Design a 1-to-8 demultiplexer by hand. The
block diagram and truth table for the demulti-
plexer are given in Fig. 2.55. Give the
minimized logic expressions for each output
and the full logic diagram for the system.

Fig. 2.55
1-to-8 demultiplexer functionality

Section 2.3: Sequential Logic
2.3.1 How does the width of a register relate to the

number of D-Flip-Flops used in the circuit?

2.3.2 For the state diagram in Fig. 2.56, how many
D-Flip-Flops will this machine take if the states
are encoded in binary?

Fig. 2.56
FSM 0 state diagram

2.3.3 For the state diagram in Fig. 2.56, how many
D-Flip-Flops will this machine take if the states
are encoded in gray code?

2.3.4 For the state diagram in Fig. 2.56, how many
D-Flip-Flops will this machine take if the states
are encoded in one-hot?

2.3.5 For the state diagram in Fig. 2.56, is this a
Mealy or Moore machine?

The next set of questions are about the design
of a finite state machine by hand to implement
the behavior described by the state diagram in
Fig. 2.56. For this design, you will name the
current state variable Q0_cur and name the
next state variable Q0_nxt. You will also use
the following state codes:

OFF ¼ ‘0’

ON ¼ ‘1’

2.3.6 For the state diagram in Fig. 2.56, what is the
next state logic expression for Q0_nxt?

2.3.7 For the state diagram in Fig. 2.56, what is the
output logic expression for Assert?

2.3.8 For the state diagram in Fig. 2.56, provide the
final logic diagram for this machine.

2.3.9 For the state diagram in Fig. 2.57, how many
D-Flip-Flops will this machine take if the states
are encoded in binary?

Fig. 2.57
FSM 1sState diagram
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2.3.10 For the state diagram in Fig. 2.57, how many
D-Flip-Flops will this machine take if the states
are encoded in gray code?

2.3.11 For the state diagram in Fig. 2.57, how many
D-Flip-Flops will this machine take if the states
are encoded in one-hot?

2.3.12 For the state diagram in Fig. 2.57, is this a
Mealy or Moore machine?

The next set of questions are about the design
of a finite state machine by hand to implement
the behavior described by the state diagram in
Fig. 2.57. For this design, you will name the
current state variables Q1_cur and Q0_cur and
name the next state variables Q1_nxt and
Q0_nxt. You will also use the following state
codes:

Start ¼ “00”

Midway ¼ “01”

Done ¼ “10”

2.3.13 For the state diagram in Fig. 2.57, what is the
next state logic expression for Q1_nxt?

2.3.14 For the state diagram in Fig. 2.57, what is the
next state logic expression for Q0_nxt?

2.3.15 For the state diagram in Fig. 2.57, what is the
output logic expression for Dout?

2.3.16 For the state diagram in Fig. 2.57, provide the
final logic diagram for this machine.

Section 2.4: Memory
2.4.1 For a 512k � 32 memory system, how many

unique address locations are there? Give the
exact number. Remember that 512k is short-
hand for 524,288.

2.4.2 For a 512k � 32 memory system, what is the
data width at each address location? Remem-
ber that 512k is shorthand for 524,288.

2.4.3 For a 512k � 32 memory system, what is the
capacity in bits? Remember that 512k is short-
hand for 524,288.

2.4.4 For a 512k � 32-bit memory system, what is
the capacity in bytes? Remember that 512k is
shorthand for 524,288.

2.4.5 For a 512k � 32 memory system, how wide
does the incoming address bus need to be in
order to access every unique address loca-
tion? Remember that 512k is shorthand for
524,288.

2.4.6 Name the type of memory with the following
characteristic: when power is removed, the
data is lost.

2.4.7 Name the type of memory with the following
characteristic: when power is removed, the
memory still holds its information.

2.4.8 Name the type of memory with the following
characteristic: it can only be read from during
normal operation.

2.4.9 Name the type of memory with the following
characteristic: during normal operation, it can
be read and written to.

2.4.10 Name the type of memory with the following
characteristic: data can be accessed from any
address location at any time.

2.4.11 Name the type of memory with the following
characteristic: data can only be accessed in
consecutive order; thus, not every location of
memory is available instantaneously.

2.4.12 Name the type of memory with the following
characteristic: this memory is non-volatile,
read/write, and only provides data access in
blocks.

2.4.13 Name the type of memory with the following
characteristic: this memory uses a floating-
gate transistor, can be erased with electricity,
and provides individual bit access.

2.4.14 Name the type of memory with the following
characteristic: this memory is non-volatile,
read/write, and provides word-level data
access.

2.4.15 Name the type of memory with the following
characteristic: this memory uses a floating-
gate transistor that is erased with UV light.

2.4.16 Name the type of memory with the following
characteristic: this memory is programmed by
blowing fuses or anti-fuses.

2.4.17 Name the type of memory with the following
characteristic: this memory is partially
fabricated prior to knowing the information to
be stored.

2.4.18 How many transistors does it take to imple-
ment an SRAM cell?

2.4.19 Why is a DRAM cell referred to as a 1T 1C
configuration?

2.4.20 What is the key difference between a DRAM
storage cell and an FRAM storage cell?
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Chapter 3: Computer Systems
This chapter introduces the general organization of a computer system [4, 5, 6, 10]. The chapter

describes the key hardware components in a computer including the central processing unit, registers,
the control unit, the arithmetic/logic unit, program memory, data memory, and input/output. Software is
then introduced as a set of computer-specific instructions that are inserted in program memory in a
particular order to accomplish a desired task. Then a basic overview of how an instruction is executed is
covered. The primary goal of this chapter is to introduce the key components of a computer and all of the
terminology that will be used throughout the rest of the book, plus provide a basic understanding of how
computers execute instructions.

Learning Outcomes—After completing this chapter you will be able to:

3.1 Describe the basic concept of a computer system.
3.2 Describe the basic components and operation of computer hardware.
3.3 Describe the basic components and operation of computer software.

3.1 Computer Overview

A computer is a collection of hardware and software working together to accomplish a task. Every
computer has a set of specific instructions that it is designed to execute. This group of instructions is
called its instruction set. Computers have instructions that can move information in and out of memory,
manipulate the information using arithmetic/logical operations, and control the flow of the instruction
execution. Each instruction in the set has a unique operation code, or op-code, which is a binary code
that identifies the instruction. Individual instructions are relatively simple; however, when a large
sequence of instructions is executed in a particular order, a computer is able to accomplish very complex
tasks. While it may take executing millions of instructions to accomplish anything meaningful, modern
computers are able to execute the instructions so rapidly that to a human they seem nearly instanta-
neous. Computer software refers to the sequence of instructions that when executed one by one, will
accomplish a desired task. The sequence of instructions that perform the task is called the program.
A software developer, or programmer, is a person who designs the program by deciding which
instructions and in what order to use.

The computer hardware provides all of the necessary functionality to store the program, retrieve the
individual instructions from memory, and execute them. The hardware also includes additional useful
circuits such as fast storage and data manipulation logic that can be used by the program. The computer
also contains circuitry that allows the program to interact with the outside world. The term “hardware”
refers to all of the physical components within the system. Specific circuitry that comprises computer
hardware includes memory devices, registers, finite state machines, combinational logic, and the bus
system to move data between sub-systems.
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CONCEPT CHECK

CC3.1 Does a software developer decide which instructions that the computer should be able to
execute when designing a program?

A) No. The instructions that a computer can execute are part of its built-in
architecture. The software developer instead puts together a collection of
these built-in instructions in a certain order so that when executed will
accomplish a task.

B) Yes. The developer can create any instruction needed to accomplish the
desired task.

C) Yes. A developer has complete control over what the computer can do.

D) Yes. Of course they usually try to use the computer’s existing instructions. But
if needed, they can change the computer’s architecture.

3.2 Computer Hardware

Figure 3.1 shows a block diagram of the basic hardware components in a computer.

Fig. 3.1
Hardware components of a computer system
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3.2.1 Program Memory

A computer accomplishes a desired task by executing instructions in a particular order or by
selectively executing some instructions while skipping others. In order for the computer hardware to
execute the instructions, they must reside within the computer hardware. The storage system that holds
the instructions is called program memory. Program memory is treated as read only memory during
execution in order to prevent the instructions from being overwritten by the computer. Some computer
systems will implement the program memory on a true ROM device (MROM or PROM), while others will
use a EEPROM that can be read from during normal operation but can only be written to using a
dedicated write procedure. Programs for microcontrollers are typically held in non-volatile memory so
that the computer system does not lose its program when power is removed. Modern general-purpose
computers will often copy programs from non-volatile memory (e.g., a hard disk drive) to volatile memory
(i.e., “RAM”) after startup in order to speed up instruction execution. In this case, care must be taken that
the program does not overwrite itself.

3.2.2 Data Memory

Computers also contain data memory, which can be written to and read from during normal
operation. This memory is used to hold temporary variables that are created by the software program.
This memory expands the capability of the computer system by allowing large amounts of information to
be created and stored by the program. Additionally, computations can be performed that are larger than
the width of the computer’s circuitry by holding interim portions of the calculation (e.g., performing a
128-bit addition using 16-bit adders). Data memory is implemented with R/W memory, most often SRAM
or DRAM. When someone talks about the “RAM” in a computer, they are talking about the data memory.

3.2.3 Central Processing Unit

The central processing unit (CPU) is considered the brains of the computer because it facilitates all
steps involved in executing instructions. The CPU handles reading instructions from memory, decoding
the op-code to determine which instruction is being performed, and executing the necessary steps to
complete the instruction. The CPU also contains a set of registers that are used for general-purpose data
storage, operational information, and system status. Finally, the CPU contains circuitry to perform
arithmetic and logic operations on data.

3.2.3.1 Control Unit

The control unit is a finite state machine that controls the operation of the computer. This FSM has
states that perform fetching the instruction (i.e., reading it from program memory), decoding the instruc-
tion op-code, and executing the appropriate steps to accomplish the functionality of the instruction. This
process is known as the fetch ! decode ! execute cycle and is repeated each time an instruction is
executed. As the control unit FSM traverses through its states, it asserts control signals that move and
manipulate data to achieve the desired functionality. Figure 3.2 shows a conceptual model for the control
unit FSM. The state diagram contains states that perform fetching the op-code from program memory
and decoding it to determine which instruction is being executed. Then a sequence of instruction-specific
states are traversed to accomplish the desired functionality of the instruction. Each instruction that the
CPU can execute can be visualized as a separate sequence of execution states. After execution, the
FSM returns to the fetch state to retrieve the next op-code in program memory corresponding to the next
instruction in program memory.
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3.2.3.2 Registers

The CPU contains a variety of registers that are necessary to execute instructions and hold status
information about the system. Different computer architectures have different number of registers and
also different register names; however, the purpose of the registers is essentially the same across basic
computer architectures. There are two groups of registers: dedicated and general-purpose. Dedicated
registers are used as part of the normal operation of the computer and are generally not under the control
of the program. General-purpose registers can be used by the program as needed. The following is a
description of the common registers within a computer CPU.

• Program Counter (PC) – The program counter holds the address of next instruction in
programmemory to execute. In the fetch state of the control unit FSM, the op-code is read from
this address in program memory. As soon as this address is used to retrieve the op-code of the
current instruction, the PC is incremented to the next address location in program memory. By
incrementing to the next location in memory, the control unit knows where to read the next
op-code after the current instruction completes. When a computer first powers up, the PC must
be initialized with the address of the first instruction in the program.

• Stack Pointer (SP) – The stack pointer provides a way to dynamically allocate variable space
in the data memory without having to keep track of specific addresses. The concept of a stack
and its use in the MSP430 will be covered later.

• Status Register (SR) – The status register contains status bits, or flags, that are asserted
when various conditions occur during the execution of the program. The most commonly used
status bits within the SR are two’s complement overflow (V), negative (N), zero (Z), and carry
(C). These flags are updated based on the results of operations in the ALU.

• Instruction Register (IR) – This register is used to hold the op-code/operand that is fetched
from program memory during the first part each instruction.

• General-Purpose Registers – These registers can be used for anything the program wants.

Fig. 3.2
Conceptual model for the control unit FSM
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3.2.3.3 Arithmetic Logic Unit (ALU)

The arithmetic logic unit (ALU) is the system that performs all mathematical (i.e., add, subtract,
increment, decrement) and logic operations (i.e., AND, OR, XOR, setting bits, clearing bits). This system
operates on data being held in CPU registers. The ALU has a unique symbol associated with it to
distinguish it from other functional units in the CPU as shown in Fig. 3.1. The ALU also contains logic to
produce status bits that provide the ability for subsequent instructions to react to particular results. The
status bits coming from the ALU are carry (C), negative (N), zero (Z), and two’s complement overflow (V).
These bits are latched into the status register upon completion of the ALU operation.

3.2.4 Input/Output Ports

A computer is only useful if it can interact with the outside world. The hardware component used to
access the outside world is called a port. Ports can be input, output, or bidirectional. Input/output (I/O)
ports can be designed to pass information in a parallel or serial format. Parallel ports pass data as a bus
and allow more information to be transferred per instruction. Serial ports use a single line and send data
bit by bit. This has the advantage that it requires fewer pins on a device; however, serial buses typically
take more time to transmit the same information compared to parallel ports.

3.2.5 Bus System

The bus system of a computer handles routing all signals between the CPU and memory. The bus
system contains a memory address bus (MAB) that provides a single address to data memory, program
memory, and the I/O ports. The system also containsmemory data bus (MDB) that carries information back
and forth between the CPU and the memory and I/O ports. Various control signals are also included in
the bus system to facilitate reading and writing. One key concept of the bus system is that the I/O ports,
data memory, and programmemory share the address and data buses. Every specific location, regardless
of being an I/O port, a location in data memory, or a location in program memory, is assigned a unique
address. This is called a memory mapped system. Each microcontroller has a specific memory map,
which gives the addresses for all locations in memory. The detailed memory map for the MSP430 will be
covered later. Figure 3.3 shows an updated block diagram of the hardware components in a computer
with the I/O, data memory, and program memory logically grouped within a memory system block.

Fig. 3.3
Computer hardware overview with memory mapped organization
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CONCEPT CHECK

CC3.2 Why is it important to have the first program memory that is accessed on power-up be
non-volatile?

A) Because when the computer powers up, it will start the fetch ! decode !
execute cycle. The computer needs a sequence of instructions to be immedi-
ately available so that it can start operating.

B) It isn’t. Computers run without programs all the time.

C) So that the computer can run programs when the power is removed.

D) So that we have an equal amount of volatile and non-volatile memory in order
ensure the computer is balanced.

3.3 Computer Software

As mentioned in Sect. 3.1 computer software is a collection of instructions that have been placed in
a particular order that when executed, accomplishes a task. A software programmer creates the program
by deciding which instructions to use and in what order. A computer is designed to execute a unique set
of instructions, which is called its instruction set. Some computer systems have a very small number of
instructions in order to reduce the physical size of the circuitry needed in the CPU. This allows the CPU to
execute the instructions very quickly but requires a large number of operations to accomplish a given
task. This architectural approach is called a reduced instruction set computer (RISC). The alternative to
this approach is to make an instruction set with a large number of dedicated instructions that can
accomplish a given task in fewer CPU operations. The drawback of this approach is that the physical
size of the CPU must be larger in order to accommodate the various instructions. This architectural
approach is called a complex instruction set computer (CISC).

3.3.1 Classes of Instructions

There are three general classes of instructions in a computer: (1) data movement, (2) data manipu-
lation, and (3) program flow.

3.3.1.1 Data Movement Instructions

Data movement instructions move information between the CPU and memory or between two
memory locations. Data movement instructions do not use the ALU, but rather assert control signals
within the bus system to facilitate the routing and storing of information between a source and
destination.

3.3.1.2 Data Manipulation Instructions

Data manipulation instructions use the ALU to perform arithmetic or logical operations on informa-
tion. Examples of data manipulation instructions are addition, subtraction, ANDs, XORs, increments,
decrements, bit-sets, and bit-clears.
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3.3.1.3 Program Flow Instructions

Asmentioned in Sect. 3.2.3.2, the program counter tracks the current location in programmemory of
the instruction to be executed. During the normal fetch!decode!execute cycle, the instruction is read
from the current address held in the program counter during the fetch. It is then assumed that the next
instruction will reside in program memory immediately following the current instruction. Based on this
assumption, the program counter is incremented to point to the next location in program memory so that
when the current instruction completes, the CPU is ready to fetch the next instruction. If there was no way
to alter the program counter beyond what was just described, the only type of program that could be
written would be a serial sequence of instructions without any ability to repeat (i.e., loop) or selectively
execute certain instructions under certain conditions (i.e., conditional statements such as if/else, case,
etc.). Program flow instructions provide the ability to alter the program counter to support looping and
conditional statement functionality.

Computers contain unconditional program flow instructions and conditional program flow
instructions. Unconditional program flow instructions always change the program counter to a fixed
value. Unconditional instruction supports loop-forever functionality. Conditional program flow instructions
only alter the program counter when certain conditions exist within the status register, specifically
assertions on the VNZC bits. If a certain SR condition exists, then the conditional instruction will change
the program counter to a new value. If the SR condition does not exist, the program counter is
incremented as in normal operation. This behavior allows programs to conditionally execute sections
of instructions in programmemory to support behavior such as while loops, if/else, and case statements.

3.3.2 Op-codes and Operands

A computer instruction contains two main components, an op-code and an operand. The op-code is
a unique binary code given to each instruction in the set. The CPU decodes the op-code in order to know
which instruction is being executed and then takes the appropriate steps to complete the instruction.
Each op-code is assigned a mnemonic, which is a descriptive name for the op-code that can be used
when discussing the instruction functionally. For example, a data movement instruction may have a
mnemonic of mov; an addition instruction may have a mnemonic of add; and an increment instruction
may have a mnemonic of inc. The mnemonics allow us to communicate which instruction we are talking
about and are also used in low-level programming languages. A low-level language that will be used
throughout this book is called assembly. In assembly, a program is created by listing out each and every
instruction to be placed into program memory using its mnemonic and any other information needed by
the instruction. A piece of software called an assembler then translates the mnemonics and additional
information for each instruction into its specific op-code so that the program can be placed into program
memory.

The second part of an instruction is an operand. The operand provides additional information
needed to complete the instruction. For example, if we wanted to perform a mov instruction, we would
need to tell the CPU where the information to be moved currently resides and where it is going. By using
the concept of an operand, a single instruction op-code can perform a large number of unique move
operations. These include moving/copying information: from memory into any of the general-purpose
CPU registers, from any CPU register into memory, between any two CPU registers, and between any
two memory locations. In the MSP430, instructions use the concept of a source (src) and a destination
(dst) to construct the operand. When both a source and destination are needed, the src is listed first and
the dst is listed second separated by a comma. The operand is provided after the mnemonic, space, or
tab delimited.
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Let’s examine the anatomy of an instruction by breaking down the mov instruction as shown in
Fig. 3.4. This instruction will copy the contents from the src location into the dst location. This instruction
example is beginning to take the form of how a line of an assembly program will look. Each line
represents an instruction that will be placed into program memory. The first item listed is the instruction
mnemonic. In this case, mov is used to indicate the instruction. The second item listed is the operand. In
this case, the operand is a src and dst. The assembler will translate this line into a unique binary code
consisting of the op-code and operand that can be placed into program memory and executed by the
CPU.

Let’s take a look at another instruction that uses src and dst within the operand, but is slightly more
complicated. The addition (add) instruction will add two inputs using the ALU. Figure 3.5 shows the
anatomy of an add instruction. This instruction will add the src to the dst, but the result of the addition
must be placed somewhere in the CPU. This instruction is designed to put the sum back into the dst
register. The src register is not altered. Additionally, the ALU will update the overflow (V), negative (N),
zero (z), and carry # bits in the status register.

Let’s look at one more instruction that only requires a single item in the operand. The increment
(inc) instruction will add one to the location specified in the operand and then place the new value back
into the dst location. Figure 3.6 shows the anatomy of an inc instruction. This instruction only requires

Fig. 3.4
The anatomy of a mov instruction

Fig. 3.5
The anatomy of an add instruction
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the dst to be specified in the operand. Additionally, the ALU will update the overflow (V), negative (N),
zero (Z), and carry (C) bits in the status register. The original contents of dst prior to the increment
are lost.

CONCEPT CHECK

CC3.3 Software development consists of choosing which instructions, and in what order, will be
executed to accomplish a certain task. The group of instructions is called the program
and is inserted into program memory. Which of the following might a software developer
care about?

A) Minimizing the number of instructions that need to be executed to accomplish
the task in order to increase the computation rate.

B) Minimizing the number of registers used in the CPU to save power.

C) Minimizing the overall size of the program to reduce the amount of program
memory needed.

D) Both A and C.

3.3.3 Program Development Flow

Program development for the MSP430 can occur at multiple levels of abstraction. At the highest
level, the language C can be used to develop programs without needing to understand the architecture of
the CPU or how the internal registers are used to move and manipulate data. For programs developed
in C, a compiler is used to convert the high-level programming constructs into individual assembly
language instructions.

Fig. 3.6
Anatomy of an inc instruction
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Programs can also be developed at the instruction level using an assembly language. In assembly
language programming, each instruction is listed in a file using its mnemonic with the associated
operands. Additionally, information can be provided in an assembly file that will dictate memory alloca-
tion for variables and also a variety of other settings for the MSP430. For programs developed in
assembly, an assembler is used to translate the instruction mnemonics and operands into their
corresponding binary codes. The binary file(s) that are created by the assembler are called object
files. At this level of the development cycle, the binary files (or binaries for short) have not been assigned
to specific memory locations within the MSP430.

A linker is a tool within the development flow that joins multiple source files and assigns the final
addresses for the program code. The reason that the binaries are not assigned to specific addresses
prior to the linker step is so that programs can be developed for any device within the MSP430 family and
leave the decision about which specific part number will be used until the program is complete. Many
times, it is unknown how much memory or peripherals will be needed until the program is finished.
Leaving the memory assignment until the linker stage allows the programmer to continue development
while postponing the final device selection until the end when the final requirements of the software are
known. The output of the linker stage is an executable object file that is ready to be downloaded to the
MSP430 using an EEPROM programmer.

Once the program has been downloaded into the non-volatile memory of the MSP430, the program
can be run or debugged. A debugger is a tool that allows the program to be executed instruction by
instruction, or stepped, and the values within the CPU registers and memory to be observed after each
instruction is executed. This allows the developer to debug the program if it is not operating properly.
Figure 3.7 shows a flow chart of the MSP430 development cycle. Note that in this textbook we will first
learn about the operation of the MSP430 by programming it in assembly. This will allow us to learn the
detailed architecture of the computer system and understand the intricacies of instruction execution and
memory usage. Then we will move into a higher level of abstraction and begin programming the MSP430
in C. Programming in C will allow more complex programs to be created in a reasonable amount of time
and is how embedded computer programs are typically developed.
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Summary

v A computer is a collection of hardware and
software working together to accomplish
a task.

v Computer hardware components are
constructed to execute a specific set of
instructions.

v The instructions that a computer is designed
to execute are called its instruction set.

v The main hardware components of a com-
puter are the central processing unit (CPU),
program memory, data memory, and input/
output ports.

v The CPU consists of registers for fast stor-
age, an arithmetic logic unit (ALU) for data
manipulation, and a control state machine

Fig. 3.7
MSP430 program development flow
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that directs all activity to execute an
instruction.

v The control unit continuously performs a
fetch-decode-execute cycle in order to com-
plete instructions.

v A memory mapped system is one in which
the program memory, data memory, and I/O
ports are all assigned a unique address. This
allows the CPU to simply process information
as data and addresses and allows the pro-
gram to handle where the information is
being sent to. A memory map is a graphical
representation of what address ranges vari-
ous components are mapped to.

v Instructions are inserted into program mem-
ory in a sequence that when executed will
accomplish a particular task. This sequence
of instructions is called computer software, or
a program.

v There are three primary classes of
instructions: data movement, data manipula-
tion, and program flow.

v An instruction consists of an op-code and a
potential operand. The op-code is the unique
binary code that tells the control state
machine which instruction is being executed.
An operand is additional information that may
be needed for the instruction.

v Data movement instructions copy informa-
tion between memory and CPU registers,
between CPU registers, or between memory
locations.

v Data manipulation instructions perform ALU
operations on information being held in CPU
registers.

v Program flow instructions alter the flow of
instruction execution by altering the program
counter.

v Unconditional program flow instructions
always change the PC to a specific address.

v Conditional program flow instructions only
change the PC under certain conditions dic-
tated by status flags in the status register.

v The status flags are held in the status regis-
ter. The most commonly used flags are the
negative flag (N), zero flag (Z), two’s comple-
ment overflow flag (V), and carry flag (C).

v Programs can be developed in higher-level
languages such as C or in lower-level
languages such as assembly.

v When developing in C, a compiler is used to
convert the program into an assembly
level file.

v An assembly program is a program written at
the instruction level but using the instruction
mnemonics instead of the instruction
op-codes to make more readable.

v An assembler is used to convert an assembly
source file into unique binary codes that the
CPU understands.

v A linker contains the information about the
computer system’s memory map and
assigns the output of the assembler into spe-
cific addresses within the memory system.

v Once downloaded onto the computer, a
debugger can be used to step the program
instruction by instruction and provide the
values of the CPU registers and memory at
each step. This allows the program to be
evaluated for proper operation.

Exercise Problems

Section 3.1: Computer Overview
3.1.1 What is the basic description of a computer?

3.1.2 What is the basic description of computer
hardware?

3.1.3 What is the basic description of a computer
software?

3.1.4 If instructions are simple operations, how can a
computer perform meaningful tasks?

3.1.5 What is the list of instructions that a computer
is designed to execute called?

3.1.6 Can computer hardware do anything without
software?

3.1.7 Can computer software do anything without
hardware?

3.1.8 Once the sequence of instructions that will per-
form the task is designed, what is it called?

3.1.9 What is the person called that decides the
sequence of instructions to be executed in
order to accomplish a task?

Section 3.2: Computer Hardware
3.2.1 What computer hardware sub-system holds

the temporary variables used by the program?

3.2.2 What computer hardware sub-system contains
fast storage for holding and/or manipulating
data and addresses?

3.2.3 What computer hardware sub-system allows
the computer to interface to the outside world?
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3.2.4 What computer hardware sub-system
orchestrates the fetch-decode-execute
process?

3.2.5 What computer hardware sub-system contains
the circuitry that performs mathematical and
logic operations?

3.2.6 What computer hardware sub-system holds
the instructions being executed?

3.2.7 What computer hardware sub-system
facilitates routing the signals back and forth
between the various components in a
computer?

3.2.8 What computer hardware sub-system groups
the control unit, registers, and ALU together?

3.2.9 How does a memory mapped system make
computer operation simpler?

Section 3.3: Computer Software
3.3.1 Which element of computer software is the

binary code that tells the CPUwhich instruction
is being executed?

3.3.2 Which element of computer software is the
supplementary information required by an
instruction such as constants or which
registers to use?

3.3.3 Which class of instructions handles moving
information between memory and CPU
registers, between CPU registers, or between
memory locations?

3.3.4 Which class of instructions alters the flow of
program execution?

3.3.5 Which class of instructions alters data using
either arithmetic or logical operations?

3.3.6 If you are developing a program in C, would
you use a compiler or assembler to convert
your code into a lower-level version of the
instructions?

3.3.7 If an assembly program is essentially a list of
instructions, why not just program using the
op-codes and skip the assembler step?

3.3.8 What is the purpose of a linker?

3.3.9 What is the purpose of a debugger?
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Chapter 4: The MSP430
This chapter introduces the MSP430 microcontroller family and then moves into the specifics of the

MSP430FR2355 device that will be used throughout the rest of this book [1–3]. At this point, the reader
should have an understanding of terminology and the basic operation of computer systems. The goal of
this chapter is to provide the key details necessary to begin programming the MSP430FR2355 using the
LaunchPad™ Development Kit. While the code examples presented through the rest of this book are
applicable to other MSP430 MCUs, the purpose of this book is to provide specific code examples that
can be directly run on the LaunchPad™ using the TI Code Composer Studio.

Learning Outcomes—After completing this chapter you will be able to:

4.1 Describe the basic components and operation of the MSP430 hardware.
4.2 Describe the basic components and operation of the MSP430 software.
4.3 Describe the basic components and operation of the MSP430FR2355 LaunchPad™

Development Kit.

4.1 MSP430 Hardware Overview

TheMSP430 is a family of MCUs produced by Texas Instruments. The MSP430 family is based on a
16-bit CPU and is optimized for low-cost, low-power signal processing applications. The MSP430 family
contains a general architecture that contains a 16-bit CPU, ROM and R/W memory, and an abundant
suite of peripherals on a single chip. The MSP430’s peripherals contain many signal processing
capabilities, thus providing the rationale for its name Mixed Signal Processor. Figure 4.1 shows a
simplified functional block diagram for the MSP430 MCU.

Fig. 4.1
MSP430 simplified functional block diagram
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4.1.1 Word Versus Byte Memory Access

The MSP430 supports both byte and word memory access. Bytes are located at even or odd
addresses. Words are located in the ascending memory locations aligned to even addresses with the low
byte (LB) at the even address, followed by the high byte (HB) at the next odd address. Figure 4.2 shows
the two memory models representing the same functionality within the MSP430 memory.

4.1.2 Program Memory

The MSP430 family supports varying sizes and technologies for non-volatile memory. Non-volatile
memory sizes range from 0 to 512 kB. Technologies for the non-volatile memory include MROM, Flash,
and FRAM. For FRAM-based devices, there are regions of the non-volatile memory that can be written to
by the program for storage of data when power is removed.

4.1.3 Data Memory

The MSP430 documentation refers to its R/W, volatile memory as “RAM” throughout its documen-
tation. To be consistent, this book will attempt to use the same terminology as the TI documentation.
RAM sizes in the MSP430 range from 125 bytes to 66 kB. MSP430 RAM memory is implemented
primarily with SRAM technology; however, some MCUs can also contain a small amount of FRAM for
data memory.

4.1.4 Central Processing Unit

The MSP430 family is based on a 16-bit RISC CPU.

4.1.4.1 Registers

The MSP430 CPU has 16 registers that are 20-bits wide. By default, the registers are operated on
as 16-bit words; however, specific instructions exist to operate on the registers as either 20-bit or 8-bit
words. The reason that the registers are 20-bits wide is so that they can be used to hold 20-bit addresses
to support MCUs with 1 M of system memory. The registers are named R0, R1, R2, R3, . . ., R15. R0-R3
are special-purpose registers and cannot be manipulated directly by the software. R4 through R15 are
general-purpose registers because they can be used in any manner by the program. The descriptions of
the MSP430 registers are as follows:

Fig. 4.2
Byte versus word access memory model
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• R0: Program Counter (PC) – The program counter holds the address of next instruction in
program memory to execute. The program counter in the MSP430 is always used as a full
20-bit register, so it can provide access to 220 ¼ 1,048,576 address locations (a.k.a. 1M) in the
memory system.

• R1: Stack Pointer (SP) – The stack pointer also is used as a 20-bit address to access memory;
however, it specifically addresses data memory. The SP provides a way to dynamically allocate
variable space in the data memory without having to keep track of specific addresses. The
concept of a stack and its use in the MSP430 will be covered later.

• R2: Status Register (SR) – The status register contains status bits, or flags, that are asserted
when various conditions occur during the execution of the program. This register also contains
bits that can be configured to turn on and off certain functions within the computer. Figure 4.3
provides the details of the flags within SR. The detailed use of these flags will be covered later
in this book.

• R3: Constant Generator (GC) – This register is used by the CPU to speed up the instruction
execution. The details of its functionality are not key to understanding the basic operation of the
CPU at this point.

• R4 ➔ R15: General-Purpose Registers – These registers can be used for anything the
programmer wants.

Note that the instruction register is not shown in Fig. 4.1 because it cannot be accessed by the
programmer.

4.1.4.2 ALU

The arithmetic logic unit (ALU) in the MSP430 performs all mathematical (add, subtract, increment,
decrement) and logical (AND, XOR, invert, rotate, bit clear/set) operations. This system operates on data
being held in CPU registers. The ALU contains logic to produce status bits (VNZC) that are latched into
the status register for specific instructions. The ALU is a 16-bit circuit, so it only operates on the lower
16-bits of the CPU registers. Figure 4.4 gives a block diagram of the MSP430 ALU showing how the data
is routed into and out of it.

Fig. 4.3
Status register (SR) details
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4.1.5 Input/Output Ports and Peripherals

What makes the MSP430 an MCU and not a standard computer is its built-in peripherals. The
following subsections provide a brief introduction to some of the common peripherals used on the
MSP430. This introduction is only meant to introduce these peripherals. In-depth coverage of using
the peripherals will be covered later in the book. Figure 4.5 shows an expandedMSP430 functional block
diagram highlighting the peripherals.

Fig. 4.4
MSP430 ALU overview
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4.1.5.1 Digital I/O

The MSP430 contains digital I/O that acts as parallel buses that interface with the outside world.
Each of these I/O pins can be programmed to either be inputs or outputs and also contains an optional
pull-up or pull-down resistor. The full MSP430 architecture has up to 12-, 8-bit I/O ports; however, very
few MCU devices have these many I/O ports implemented.

4.1.5.2 Serial I/O

The MSP430 contains numerous serial communication peripherals that support multiple serial
communication protocols. The MSP430 calls these modules the enhanced Universal Serial Communi-
cation Interface (eUSCI) modules. One flavor of these modules is labeled eUSCI_A and can be
configured to implement either a universal asynchronous receiver/transmitter (UART) protocol or a serial
peripheral interface (SPI) protocol. The other flavor of these modules is labeled eUSCI_B and can be
configured to implement either a SPI protocol or an inter-integrated circuit (I2C). An MSP430 MCU can
contain multiple eUSCI_As and eUSCI_Bs. The naming convention in the TI documentation for the
proliferation of these modules is eUSCI_Ax (i.e., eUSCI_A0, eUSCI_A1) and eUSCI_Bx (i.e.,
eUSCI_B0, eUSCI_B1).

4.1.5.3 Timers

The MSP430 also contains numerous timer peripherals. A timer is a binary counter that runs
independent from the CPU and can be used to track or generate events based on its value. Timers
allow the selection of various clock sources to control how fast the counter runs. Events can be
generated when the counter reaches certain values (compare mode) and when the counter overflows.
The counters can also store their current value when external signals are asserted (capture mode).
Events that can be triggered range from altering the program execution to performing a full system reset.

Fig. 4.5
MSP430 functional block diagram highlighting peripherals
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The MSP430 contains four specific types of timer modules called Timer_A, Timer_B, Real-Time Clock
(RTC) counter, and aWatchdog counter. An MCU can have multiple Timer_A and Timer_B modules. The
naming convention in the TI documentation for the proliferation of these modules is Timer_Ax (i.e.,
Timer_A0, Timer_A1) and Timer_Bx (i.e., Timer_B0, Timer_B1).

4.1.5.4 Analog-to-Digital Converter

The MSP430 also contains an analog-to-digital converter (ADCs) module. An ADC takes in an
analog signal on a pin of the device and produces a binary equivalent value of the voltage level. Each
time the digital value is generated, it is called a sample. These samples can be used to alter the
execution of code. By accumulating a series of samples, the MCU can recreate a digital representation
of the analog signal over a period of time and then perform signal conditioning to the sample set. The
MSP430 allows multiple input pins to be fed into a single ADC using a selectable switch. This allows the
ADC to perform conversions on multiple inputs. The MSP430 ADC can support up to 12 bits of resolution
for the conversion and can route up to 16 input channels to the ADC using a switch circuit.

4.1.5.5 Digital-to-Analog Converters

Some versions of the MSP430 also contain digital-to-analog converters (DACs). As the name
suggests, these circuits take a binary code and generate an output voltage on one of the pins of the
device. The DACs are usually fast enough to produce output signals for audio and video applications.
The MSP430 puts all of its DAC circuits within a module named the smart analog combo (SAC). The
SACs contain additional circuitry to support creating analog voltages such as operational amplifiers and
switch arrays. The MSP430’s DACs support 12-bit resolution.

4.1.5.6 Clock System

The MSP430 clock system (CS) module generates and distributes the various clock sources used
on MCU. The CS module supports takes in both internal and external clock sources and then creates
on-chip clocks for use by the MCU and peripheral. The three primary clocks that the CS module
produces are MCLK (master clock), SMCLK (subsystem master clock), and ACLK (auxiliary clock).
MCLK is the clock source for the CPU. SMCLK is the clock for the peripherals that can work indepen-
dently from CPU operation. ACLK can be used for peripherals that require low-frequency operation.
ACLK is typically set to 32.768 kHz.

4.1.5.7 Power Management Module

The MSP430 power management module (PMM). The PMM’s primary function is to generate a
power supply voltage for the core logic on-chip. Its secondary function is to provide power supply
monitoring capabilities. The supervising capabilities help guide actions that need to be taken when the
power supply begins to drop.

4.1.6 Bus System

This MSP430 CPU has a 16-bit memory data bus and a 20-bit memory address bus. The 16-bit
MDB allows information to be moved between memory and the CPU in 16-bit words. The 20-bit MAB
allows the CPU to access up to 220 ¼ 1,048,576 unique address locations. All I/O, peripherals, data
memory, and program memory are assigned to a unique address within the MSP430’s unified
memory map.
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4.1.7 MSP430 Part Numbering

The specific part numbers that make up the MSP430 family vary in the amount of memory they
contain, the type of memory used, the clock frequency, operating temperature range, packaging type,
and the testing that the device undergoes. All of the possible combinations of options within the MSP430
family results in thousands of different part numbers. This is one of the most challenging concepts to
grasp as a student when first starting to work with modern MCUs. Making the concept even more difficult
is that the documentation for the MSP430 exists at a variety of levels. There is a user’s guide for the full
functionality of the MSP430 family, yet very few, if any, part numbers will have all of the functionality
described in the guide. There is also documentation on how to program the MSP430, but the program-
mer must be aware that the code examples might be for some functionality that isn’t on their own device.
Additionally, when learning an MCU, the device needs to be loaded onto a development board. The
development boards will have a variety of built-in features such as LEDs and switches. This means
the programmer needs to be aware of what actual I/O is available to use when designing
programs. Figure 4.6 provides a key for how the specific device part numbers are created within the
MSP430 family.

Fig. 4.6
MSP430 part numbering scheme
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CONCEPT CHECK

CC4.1 Why don’t they just make a single MSP430 MCU that contains all of the possible
functionality instead of having thousands of different part numbers?

A) Not all applications require all of the functionality in the MSP430 architecture.
By creating smaller versions of the MSP430, the MCUs can be customized for
the application and be lower in power and cost.

B) It is too difficult to get everything in the MSP430 working at the same time.

C) The full MSP430 MCU is too expensive to be practical.

D) They can’t find a package large enough to fit everything in the MSP430.

4.2 MSP430 Software Overview

4.2.1 The MSP430 Instruction Set

The MSP430’s instruction set contains 27 core instructions plus 24 emulated instructions. Emulated
instructions are instructions that make code easier to write and read, but do not have op-codes
themselves. Emulated instructions have unique mnemonics and are used when programming in assem-
bly. Emulated instructions are replaced automatically by the assembler with a core instruction. There is
no performance penalty when using emulated instructions because the assembler replaces themwith an
equivalent core instruction of the same size and execution requirements. Tables 4.1, 4.2, and 4.3 give the
51 instructions for the MSP430 family grouped by their class of instruction (i.e., data movement, data
manipulation, and program flow).

Table 4.1
MSP430 data movement instructions
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Table 4.2
MSP430 data manipulation instructions
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4.2.2 Word (.W) Versus Byte (.B) Operations

Many MSP430 instructions have the ability to perform their operation on either 16-bit words or 8-bit
bytes. If the instruction mnemonic is used as is, the instruction is interpreted by the assembler to be a
16-bit operation. Special syntax can be appended to the instruction to explicitly state whether the
operation is 16-bit or 8-bit. To specify a 16-bit operation, a .w is appended to the instruction mnemonic.
To specify an 8-bit operation, a .b is appended to the instruction mnemonic. Figure 4.7 shows how the .w
and .b syntax are used. Recall from Fig. 4.2 that 16-bit words are aligned to even address, so 16-bit
access to odd addresses should be avoided.

Table 4.3
MSP430 program flow instructions

Fig. 4.7
Word versus byte operation syntax
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4.2.3 The TI Code Composer Studio Development Environment

TI provides a free development environment for MSP430 MCUs called the Code Computer Student
(CCS) Integrated Development Environment (IDE). The integrated term refers to the tool containing one
environment that can be used to compile, assemble, link, download, and debug a program on an MCU.
This text is using CCS version 9.x. Individual features of CCS will be covered in more details as we begin
developing operational programs. Figure 4.8 gives an overview of some of the development features
of CCS.

Fig. 4.8
TI code composer studio’s development environment
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CONCEPT CHECK

CC4.2 If I am programming the MSP430 in assembly, do I need to care whether or not I am using
core versus emulated instructions?

A) Yes. Since emulated instructions don’t have op-codes, some emulated
instructions may not be interpreted correctly by the assembler.

B) Yes. The emulated instructions are fake instructions that are omitted by the
assembler. They are only used for readability similar to inserting comments in
your code.

C) Yes. You will suffer a performance penalty when using emulated instructions
because you never know what core instructions the assembler is going to use
to replace them.

D) No. There is no performance penalty when using emulated instructions. They
are simply used to make the assembly program easier to read.

4.3 MSP430FR2355 LaunchPad™ Development Kit

The development board that will be used throughout the rest of this book to learn about MCUs is the
MSP430FR2355 LaunchPad™ Development Kit from Texas Instruments. This board contains an
MSP430FR2355TPT MCU in addition to a variety of extra circuitry to facilitate programming, debugging,
and providing power to the MCU. The board also contains some LEDs, buttons, pin headers, and
additional circuitry to provide an interface to a select number of peripherals on the MCU. All code
examples provided in the rest of this book are intended to be directly coded in CCS and downloaded
to this development board. Figure 4.9 gives an overview of the MSP430FR2355 LaunchPad™ Devel-
opment Kit.
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The MSP430FR2355TPT CPU is clocked off of an internal 1 MHz MCLK by default. The clock
system also produces 1 MHz SMCLK for use by the peripherals. The LaunchPad™ board contains a
32.768 kHz crystal oscillator that is fed into the MCU in order to provide the ACLK. These values
represent the default frequencies upon reset and can be configured differently if so desired. The MCU
memory system is 64 kB, which means it only uses an address range from 0000h to FFFFh (i.e., no 20-bit
addresses). The MCU contains 32kB of FRAM program memory. It contains 4k of SRAM plus 512 bytes
of FRAM for data memory. It contains six digital I/O ports labeled P1 (8-bit), P2 (8-bit), P3 (8-bit), P4
(8-bit), P5 (5-bit), and P6 (7-bit). For 16-bit port operations, the labels PA, PB, and PC are used where
PA ¼ P1:P2, PB ¼ P3:P4, and PC ¼ P5:P6. Each of these digital I/O bits is brought out to pins on the
package and can be configured as either inputs or outputs. This MCU contains four serial communication
blocks called eUSCI_A0, eUSCI_A1, eUSCI_B0, and eUSCI_B1. The “A” versions of the eUSCIs can be
configured into either UARTor SPI mode, while the “B” versions can be configured into either SPI or I2C
mode. This MCU contains four separate timers called Timer_B0, Timer_B1, Timer_B2, and Timer_B3.
The clock of each timer is selectable between MCLK, SMCLK, ACLK, and an external input. Additionally,
each of the timer clocks can be divided down to achieve numerous slower counting frequencies. The
timer peripherals also include a 16-bit RTC and a watchdog. A single 12-bit ADC is included that can
convert up to 12-input channels selected by a switch. Also, there are four smart analog combos that each
contain a 12-bit DAC. These are the primary peripherals that will be discussed in this book. Additional
peripherals on the MCU include comparators, backup memory, an interrupt controller, a 16-bit cyclic
redundancy check (CRC) error correction module, an LCD controller, and an infrared sensor manage-
ment system.

Fig. 4.9
Overview of the MSP430FR2355 LaunchPadTM Development Kit
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It would be impractical to have a dedicated pin for each and every peripheral signal within the MCU
as too many pins would be needed on the package. Simultaneously, not all MCU applications will require
every peripheral signal at the same time. Thus, to reduce the cost of the MCU, multiple internal peripheral
signals are assigned to the same pin, and then the user configures the pin to be used as whichever
peripheral is desired. This approach does limit some functionality because it is possible that two
peripheral signals may be assigned to the same package pin internally that are both needed by the
user. In this case, larger MCU is typically selected that has both desired peripheral signals on separate
pins. Figure 4.10 shows a detailed block diagram for the MSP430FR2355TPT MCU used on the
MSP430FR2355 LaunchPad™ Development Kit.

Fig. 4.10
Specific capabilities of MSP430FR2355TPT
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Everything within the MSPFR2355TPT is assigned a unique address within its 64 kB address
space. Figure 4.11 shows the memory map for this MCU.

CONCEPT CHECK

CC4.3 Why does the MSP430FR2355TPT MCU share package pins across multiple internal
peripheral signals?

A) It is impractical to assign each peripheral signal to a dedicated package pin
because the package would be too large.

B) Not all applications require all peripherals, so the pin sharing approach
reduces cost.

C) They must have run out of time when designing the packages.

D) A & B.

Fig. 4.11
MSP430FR235 memory map
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Summary

v The MSP430 is a family of MCUs designed
for low-cost, low-power operation.

v The MSP430 has a general architecture that
includes a CPU, program memory, data
memory, and abundant peripherals all
integrated on a single chip.

v Individual MCU devices only contain a sub-
set of the functionality of the larger MSP430
architecture. This allows smaller versions of
the architecture to be implemented that are
tailored for the application and reduce the
cost of the MCU.

v The MSP430’s program memory ranges in
size from 0 to 512 kB and can be
implemented in MROM, Flash, or FRAM
technologies.

v The MSP430’s data memory ranges in size
from 125 bytes to 66 kB and is implemented
primarily with SRAM technology, although
some MCUs offer a small amount of addi-
tional FRAM for data memory.

v TheMSP430 is based on a 16-bit RISC CPU.
v The CPU contains 16 registers that are nor-

mally operated on 16 bits at a time; however,
they are technically 20-bits wide to support
addressing a 1M memory system on some
MCUs. The registers are named R0!R15.
Four of the registers are special-purpose
registers that are used as the program
counter (R0 ¼ PC), stack pointer
(R1 ¼ SP), status register (R2 ¼ SR), and a
constant generator (R3 ¼ CG). The
remaining 12 registers are general-purpose
(R4!R15).

v Data in the CPU is manipulated either 16 bits
or 8 bits at a time.

v The MSP430 ALU has functionality to per-
form addition, subtraction, increments,
decrements, bit clears, bit sets, ANDs,
INVs, XOR, and rotates.

v The MSP430 ALU produces four flags that
are stored in the status register. These are
two’s complement overflow (V), negative (N),
zero (Z), and carry (C).

v The MSP430 contains digital I/O peripherals
to communicate parallel data to the outside
world. Each digital I/O bit can be configured
as either an input or output with an optional
pull-up/down resistor.

v The MSP430 contains enhanced Universal
Serial Communication Interface (eUSCI)
modules. These modules handle producing
the protocols to transmit and receive data

serially over a single pin. These modules
support UART, SPI, and I2C protocols.

v The MSP430 contains a large number of
timers. A timer is a binary counter that runs
independent of the CPU. The timer can trig-
ger events when it reaches certain values or
when it overflows. Timers can also store their
values based on input signals. The clock
frequency that drives the counters can be
chosen from a variety of courses and can
also be divided down to achieve a slower
counter rate.

v The MSP430 contains a 12-bit analog-to-dig-
ital converter. This ADC can perform
conversions on up to 12 input channels that
are switched in one at a time.

v The MSP430 clock system creates all of the
internal clocks used by the MCU. Some of
the clocks come from off-chip oscillators,
while some are produced on-chip. The three
primary clocks that the CS module produces
for internal use are MCLK (master clock),
SMCLK (subsystem master clock), and
ACLK (auxiliary clock).

v The power management module of the
MSP430 takes in an external power supply
voltage and creates all of the internal
voltages needed by the CPU and the
peripherals.

v The bus system of the MSP430 contains a
16-bit memory data bus and a 20-bit memory
address bus. The 20 address lines allow the
CPU to access 216 ¼ 1,048,576 unique
address locations.

v All memory and peripherals are mapped to a
unique address in the MSP430’s unified
memory map.

v The MSP430 has 51 instructions in its set.
This consists of 27 core instructions and
24 emulated instructions. Emulated
instructions are instructions that make code
easier to write and read, but do not have
op-codes themselves. Emulated instructions
are translated into core instructions by the
assembler.

v The MSP430 instructions can perform either
16-bit or 8-bit operations. If the mnemonic is
listed as is, the assembler assumes the
instruction is a 16-bit operation. Alternatively,
a .w can be appended to the instruction to
explicitly state that the operation is 16-bit. If
an 8-bit operation is desired, a .b is
appended to the mnemonic.
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v The TI Code Composer Student Integrated
Development Environment is a software
package that allows code development in
either assembly or C, compilation and error
correction, linking, downloading, and
debugging.

v The MSP430FR2355 LaunchPad™ Devel-
opment Kit is a board that contains a
MSP430FR2355TPT MCU in addition to cir-
cuitry to facilitate debugging, power regula-
tion, and access to the MCU’s peripherals.

v The MSP430FR2355TPT MCU used on the
LaunchPad™ board contains 32 kB of
EEPROM for program memory and 4 kB of

SRAM +512 B of FRAM for data memory.
This MCU also provides access to six digital
I/O ports, four eUSCI modules, six timer
modules, an ADC, and four smart analog
combos.

v The MSP430FR2355TPT MCU contains
other peripherals that won’t be discussed in
this text including comparators, backup
memory, an interrupt controller, a 16-bit cyclic
redundancy check (CRC) error correction
module, an LCD controller, and an infrared
sensor management system.

Exercise Problems

Section 4.1: MSP430 Hardware Overview
4.1.1 What is the MSP430 MCU optimized for?

4.1.2 What is the range of program memory sizes
within the MSP430 family?

4.1.3 What types of technology exist for program
memory within the MSP430 family?

4.1.4 What is the range of data memory sizes within
the MSP430 family?

4.1.5 What types of technology exist for data mem-
ory within the MSP430 family?

4.1.6 How many total CPU registers does the
MSP430 CPU that can be accessed?

4.1.7 How many registers within the MSP430 CPU
are special-purpose?

4.1.8 How many registers within the MSP430 CPU
are general-purpose?

4.1.9 Name all of the special-purpose registers
within the MSP430 CPU.

4.1.10 What four status bits are altered by the
MSP430 ALU?

4.1.11 What functionality does the digital I/O
peripherals provide within the MSP430?

4.1.12 What functionality does the serial I/O
peripherals provide within the MSP430?

4.1.13 What functionality does the timer peripherals
provide within the MSP430?

4.1.14 What functionality does the ADC peripheral
provide within the MSP430?

4.1.15 What functionality does the DAC peripherals
provide within the MSP430?

4.1.16 What functionality does the clock system pro-
vide within the MSP430?

4.1.17 What functionality does the power manage-
ment module provide within the MSP430?

4.1.18 How many unique addresses can the MSP430
bus system access?

Section 4.2: MSP430 Software Overview
4.2.1 Is the MSP430 CPU a RISC or CISC

architecture?

4.2.2 How many core instructions does the MSP430
CPU support?

4.2.3 How many emulated instructions does the
MSP430 CPU support?

4.2.4 Does every instruction in the MSP430’s
instruction set alter the VNZC status bits?

4.2.5 What special syntax is appended to an instruc-
tion mnemonic to indicate a 16-bit operation?

4.2.6 What special syntax is appended to an instruc-
tion mnemonic to indicate an 8-bit operation?

4.2.7 If no special syntax is appended to the instruc-
tion mnemonic, is the instruction treated as a
16-bit or 8-bit operation?

4.2.8 Does Code Composer Studio support develop-
ment in C, assembly, or both?

4.2.9 Does Code Composer Studio provide visibility
into the values in CPU registers, memory,
or both?

4.2.10 Can Code Composer Studio also download a
compiled program?

4.2.11 Can Code Composer Studio also debug a
downloaded program?

Section 4.3: MSP430FR2355 Launch-
Pad™ Development Kit
4.3.1 What is the size of program memory on the

MSP430FR2355TPT MCU loaded on the
LaunchPad?

4.3.2 Which technology is used for the program
memory on the MSP430FR2355TPT MCU
loaded on the LaunchPad?
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4.3.3 What is the specific size of data memory on the
MSP430FR2355TPT MCU loaded on the
LaunchPad?

4.3.4 What two technologies are used for the data
memory on the MSP430FR2355TPT MCU
loaded on the LaunchPad?

4.3.5 How many digital I/O ports are provided on the
MSP430FR2355TPT MCU loaded on the
LaunchPad?

4.3.6 How many serial communication blocks are
provided on the MSP430FR2355TPT MCU
loaded on the LaunchPad?

4.3.7 Which two serial communication protocols are
available within the “A” versions of the eUSCIs
on the MSP430FR2355TPT MCU loaded on
the LaunchPad?

4.3.8 Which two serial communication protocols are
available within the “B” versions of the eUSCIs
on the MSP430FR2355TPT MCU loaded on
the LaunchPad?

4.3.9 Howmany separate timers are provided on the
MSP430FR2355TPT MCU loaded on the
LaunchPad?

4.3.10 How many ADCs are provided on the
MSP430FR2355TPT MCU loaded on the
LaunchPad?

4.3.11 How many input channels can a single
MSP430FR2355TPT ADC perform
conversions on?

4.3.12 How many smart analog combo blocks are
provided on the MSP430FR2355TPT MCU
loaded on the LaunchPad?
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Chapter 5: Getting Started
Programming the MSP430 in Assembly

This chapter will introduce the logistics of programming the MSP430 MCU in assembly and running
programs on the MSP430FR2355 LaunchPad™ Development Kit [1–3]. It is expected that the reader
has CCS installed on their workstation and has a MSP430FR2355 LaunchPad™ Development Kit. This
chapter introduces the anatomy of an assembler source file and provides some simple code to blink an
LED on the LaunchPad™. The debugger tools are then explored to allow the code to be paused,
restarted, and to view the contents of registers and memory. This chapter is not intended to be an
exhaustive coverage of all possible assembler capabilities, but rather a means to form a basic under-
standing of an assembly program and get your first program running.

Learning Outcomes—After completing this chapter you will be able to:

5.1 Describe the basic anatomy of an assembly program.
5.2 Run the CCS design tools to assemble, download, and run a program on the MSP430

LaunchPad™ Development Kit.
5.3 Perform basic functions using the debugger.

5.1 The Anatomy of an Assembly Program File

An assembly source code file will have an extension of *.asm. Each line in an MSP430 assembly
source file can either be empty, an instruction, a comment, an assembler directive, or a macro invoca-
tion. A line that is not empty is called a statement.

5.1.1 Instruction Statements

An instruction statement is where the developer lists the instructions that make up the functionality
of the program. Assembly language source statements can contain four ordered fields: address label,
mnemonic, operand list, and comment.

Address labels are used to mark a point in the program that can be referenced by other instructions.
Address labels are used in program flow instructions to support functionality such as looping (i.e.,
jumping to the beginning of a code segment to repeat its execution) and conditional execution of code
(i.e., jumping over certain instructions based on status bits). Address labels are very useful because the
programmer does not need to keep track of the specific address locations within memory that are to be
used. Instead, a label is inserted in the program, and then the assembler tracks the exact address of that
label during assembly and inserts the physical address in the operand field of any instruction that uses
that label. Address labels are always listed starting in column 1 of the source file. Labels must be legal
identifiers (see Sect. 5.1.3.1). A label can be followed by an optional colon (:). The colon is not treated as
part of the label name when used in subsequent instructions. The colon does indicate to CCS that a label
is being inserted, and CCS will apply color coding to it in order to make the source file more readable.
Note that not all statement lines require a label, and a label can also exist on its own line. For instruction
statements that don’t use a label, column 1 must start with a whitespace character.

The mnemonic is the second field in the instruction statement. The mnemonic must be preceded by
whitespace, either after the label or as the beginning of the line. All op-code mnemonics in Tables 4.1,
4.2, and 4.3 are supported.
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The operand is the third field in the instruction statement (if applicable). The operand follows the
mnemonic field, separated by whitespace. For operands that require a list (i.e., src, dst), the values are
comma delimited with whitespace characters being optional after the comma (i.e., src,dst and src, dst are
valid).

The comment is the fourth field of the instruction statement. All comments must start with a
semicolon (;). Comments in the instruction field are optional but highly recommended for readability.

Figure 5.1 shows a breakdown of the four fields in an MSP430 instruction statement.

5.1.2 Assembler Directives

An assembler directive is a statement in the source file that tells the assembler information about the
program but is not an actual instruction. Directives are used to locate instructions within program
memory, allocate variable space in data memory, set up constants, and manage global variable access.
A directive begins with a period (.) and must be preceded by whitespace. Directives typically are listed in
the same column as the mnemonics field of instruction statements. Table 5.1 gives a list of directives that
are used to control memory use. These directives are how an assembly program states that instructions
go into program memory and variables go into data memory.

Fig. 5.1
Instrument statement fields

Table 5.1
Directives that control memory use
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Table 5.2 gives a list of directives that are used to reserve and/or initialize variables and constants in
memory. These directives can be used in both data memory and programmemory. Variables initialized in
data memory are done so during download to the MCU and are then treated as R/W during program
operation. Constants initialized in program memory are also done so during download to the MCU but
are treated as ROM during program operation. Address labels are used with these directives to track the
allocations memory.

Table 5.2
Directives that reserve and/or initialize locations in memory (data and memory)
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Table 5.3 gives a list of directives that are used to control interchange of information between
multiple design files within a CCS project. These include directives to pass labels back and forth between
files, making variables globally visible and allowing C and assembly files to work together in a mixed-
language development environment.

Figure 5.2 shows an assembly program that now includes both instructions and directives. This
code snippet is beginning to take the form of a real source file that can be downloaded onto the
MSP430FR2355 LaunchPad™.

Table 5.3
Directives that control interchange of information between files
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5.1.3 Miscellaneous Syntax Notes

5.1.3.1 Identifiers

Identifiers are names used for labels, registers, and symbols. An identifier is a string of alphanu-
meric characters, the dollar sign, and underscores (A-Z, a-z, 0-9, $, and _). The first character in an
identifier cannot be a number, and identifiers cannot contain embedded blanks. The identifiers you
define are case sensitive; for example, the assembler recognizes XYZ, Xyz, and xyz as three distinct
identifiers. There are built-in identifiers for CPU register names (i.e., PC and R4).

5.1.3.2 Sections

Sections are a block of code or data that occupy a continuous space in the memory map. In an
assembly file, specific syntax is used to denote the beginning of a section. The directives .text, .data, and
.sect are the main ways to define the start of a section. The linker handles inserting the sections at the
appropriate address in the memory map.

Fig. 5.2
Using directives in an assembly program
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5.1.3.3 Case Sensitivity

The CCS environment does not make a distinction in case on mnemonics (i.e., MOV.W is the same
as mov.w). In this sense, CCS is not case sensitive; however, as mentioned in Sect. 5.1.3.1, case does
matter for identifiers. Mixing case is a common programming mistake (i.e., Main: 6¼ main:).

CONCEPT CHECK

CC5.1 If you accidentally inserted a space before an address label named “Main:”, what field
would the assembler think the text is in and what error would you expect?

A) It would still consider it a label because of the colon (:) and no error would
result.

B) It would consider the text a mnemonic (i.e., field 2) and would give an error that
it did not recognize “Main” as a valid instruction mnemonic.

C) It would consider it a comment because comments start with colons (:) and no
error would result.

D) It would notice that it is not in the label location and also not a valid mnemonic,
so it would assume it is a directive.

5.2 Your First Program: Blinking LED

At this point, you are ready to create and download your first program. In this section you will start a
new CCS project and enter the provided code to make LED1 on the LaunchPad™ blink. Follow the steps
listed in Example 5.1 to create a new, blank assembly-only CCS project. Once you have done this, you
should see the same code as shown in the example. When creating a blank assembly-only project, CCS
creates all of the supporting files needed to build the executable object file. This includes information
about the MSP430 address map so that the linker knows where to place the sections of your source
code. In addition, the project sets up the reset behavior, which is where the MCU will begin executing
code when powered up or reset. Finally, the project sets up the initial value of the stack pointer. The main.
asm is created for you that provides supporting statements that allow you to just focus on creating the
main project.
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Example 5.1
Creating a blank assembly project in CCS
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Let’s inspect the provided source code provided by CCS. The .cdecls directive pulls in a header file
that defines register and bit names for the MSP430. This will be very useful as we develop advanced
programs that require setting up control registers. We can use the names from the header file instead of
trying to look up the absolute addresses of the registers in memory. Note that the “C” option allows the
header file to be read as C syntax. The “LIST” option tells CCS to include the converted C header in all
merged assembly files created.

The .def directive allows the address label RESET to be seen on other project files. This is important
because the RESET label will be the starting address to begin executing code when the MCU powers
up. Other source files need this address in order to set up the reset condition correctly.

The .text directive tells the assembler that the following statements will be put into the program code
portion of the memory map. This section starts with two directives: .retain and .retainrefs. These
directives prevent the current section, or other sections referencing it, from being automatically removed
when CCS tries to optimize the design.

The next two lines of code are two instruction statements. The first statement beginning with
“RESET” initializes the SP register to the end of the data memory (i.e., 03000h). The second statement
beginning with StopWDT configures some settings in a peripheral register that disable the watchdog
timer. At this point of the book, it is not expected that these instructions are understood. They will be
covered later.

Next is a set of comment lines that indicate where your program code will go. This is indicated by
“Main loop here.” The next two directives define an address called “__STACK_END” that represents the
end of data memory. The .global directive allows all other files in the project to see this address. Finally,
the interrupt vector section is defined using directives to define the starting address of program code and
place it in a system called the interrupt controller that will handle retrieving the address and placing it into
PC upon power-up.

The next step is to type in the code to make LED1 blink on the LaunchPad™. Follow the instructions
in Example 5.2 to enter the blinking LED code, assemble, and download to the MCU. Note that you do
not need to understand what the code is doing at this point.
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Example 5.2
Getting LED1 to blink
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CONCEPT CHECK

CC5.2 If you created a completely empty main.asm file and inserted the code given in
Example 5.2 after a .text directive, what functionality would be missing from your
program that is provided in the automatically generated main.asm files that results
when you perform “Project!New CCS Project!Empty Assembly-only Project”?

A) The MCU behavior upon reset.

B) Initialization of the Stack Pointer.

C) Including the MSP430 header file.

D) All of the above.

5.3 Using the CCS Debugger

The debugger allows you to start, stop, and pause your program to observe its operation. It also
allows you view the contents of registers and memory at specific points in your program. The debugger
allows you to also view the binary values that your program is assembled into. When developing in C, the
debugger also allows you to see the assembly file that is created during compile. This subsection will
introduce some of the most used features of the CCS debugger.

5.3.1 Resume, Terminate, and Suspend

Once a program is in debug mode (i.e., the program has been assembled and downloaded using
CCS), the Resume, Suspend, and Terminate commands become available. These commands are
available either in the Run pull-down menu or using the buttons that appear at the top of CCS when in
debug mode. The Resume command will start running your program. The Suspend command will pause
your program without ending debug mode. The Terminate command will end your program and exit
debug mode. Follow Example 5.3 to experiment with Resume, Suspend, and Terminate.
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5.3.2 Breakpoints

A breakpoint is a stopping point in the code that can be inserted by the debugger. When a program is
run and it encounters a breakpoint, it will automatically suspend. Breakpoints allow a developer to
suspend a program in a specific point and then simply resume the program and monitor activity
once it suspends. Breakpoints can be inserted in either editing or debug mode within CCS. Follow
Example 5.4 to experiment with breakpoints.

Example 5.3
Resume, Suspend, and Terminate in the debugger
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5.3.3 Viewing Register Contents

The Register Viewer within CCS allows you to see the contents of CPU registers when your program
is suspended. It also allows you to expand the Status Register to see the ALU flags. Follow Example 5.5
to experiment with viewing register contents in the debugger.

Example 5.4
Using breakpoints
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Example 5.5
Viewing the contents of registers
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5.3.4 Viewing the Contents of Memory

The CCS memory browser allows you to see the contents of the memory system. This can be
opened using the View!Memory Browser pull-down menu. Follow Example 5.6 to experiment with the
memory browser.

5.3.5 Stepping Your Program

Stepping your program refers to executing your program line by line. The CCS debugger supports
two stepping commands: Step Into and Step Over. These two commands are functionally identical
except when it comes to subroutine calls. If a subroutine exists in your program and you are using the
Step Into command, when the debugger reaches the subroutine call, it will move into the subroutine as
you step. If you use the Step Over command, it will simply execute the entire subroutine without entering
it and continue to the next instruction in the main program. Follow Example 5.7 to experiment with
stepping.

Example 5.6
Viewing the contents of memory
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CONCEPT CHECK

CC5.3 If you decided to allocate and initialize a variable in data memory, what debugger tool
would you use to verify they were set up correctly after downloading?

A) The stepper.

B) The Register Viewer.

C) The Memory Viewer.

D) A breakpoint.

Example 5.7
Stepping a program
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Summary

v Assembly source files are made up of
instruction and directive statements in addi-
tion to comments.

v An instruction statement has four fields: a
label, the mnemonic, the operand, and the
comment. Address labels are optional.
Operands are only included if needed by
the instruction. Comments are optional but
recommended.

v Address labels mark the address of where
the instruction code will reside. These are
useful because the developer doesn’t need
to keep track of the exact address for looping
or conditional jumping.

v Comments in the CCS assembler start with a
semicolon (;).

v Assembler directives are statements that tell
the assembler information about the program
but are not instructions.

v Assembler directives can be used to control
where sections are located in memory,
reserving/initializing memory for constants/
variables, and the behavior of information
interchange between different files in the
project.

v An identifier is a string of alphanumeric
characters used to name labels, registers,
and symbols. Identifiers cannot start with a
number or have blank characters. They can
include $ and _.

v A section is a block of code or data that
occupy a continuous space in the
memory map.

v CCS allows mixed case for instruction mne-
monics (i.e., mov ¼ MOV). CCS does inter-
pret case in identifiers (i.e., Var1: 6¼ var1).

v When creating a new blank assembly-only
project in CCS, it provides a main.asm file
with assembly code already inserted to han-
dle including the MSP430 memory map
details as a header, the reset condition, and
the initialization of the stack pointer.

v A debugger allows the developer to control
the execution of the program and observe
the values held in registers and memory.

v The CCS assembler starts and stops the
program using resume, terminate, and sus-
pend commands.

v Breakpoints allow a location in the program
code to be marked as a stopping point when
the program is resumed.

v The Register Viewer shows the contents of
the CPU register while debugging.

v The memory browser shows the contents of
the memory map while debugging.
Addresses can be searched in the memory
browser, but hex addresses must follow the
“0x” prefix notation.

v A program can be stepped, which gives the
ability to run the program instruction by
instruction.

Exercise Problems

Section 5.1: The Anatomy of an Assembly
Program File
5.1.1 What are the four fields of an instruction

statement?

5.1.2 What are address labels used for?

5.1.3 Do all instruction statements require an
operand?

5.1.4 What is the purpose of a comment?

5.1.5 What is an assembler directive?

5.1.6 What assembler directive instructs the assem-
bler to put the subsequent instruction
statements into the program memory section
of the memory map?

5.1.7 What assembler directive instructs the assem-
bler to put the subsequent variable allocation
statements into the data memory section of the
memory map?

5.1.8 How many bytes in memory does a .space
directive allocate if a size of 3 is provided?

5.1.9 Howmany bytes in memory does a .byte direc-
tive allocate if only one value is provided?

5.1.10 How many bytes in memory does a .short
directive allocate if only one value is provided?

5.1.11 How many bytes in memory does a .long
directive allocate if only one value is provided?

5.1.12 How many bytes in memory does a .char
directive allocate if only one character is
provided?

5.1.13 What is the difference between a .string and
.cstring directive?

5.1.14 How many bytes in memory does a .float
directive allocate if only one number is
provided?
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5.1.15 How many bytes in memory does a .double
directive allocate if only one number is
provided?

5.1.16 What does the directive .global do?

5.1.17 What does the directive .def do?

5.1.18 What does the directive .ref do?

5.1.19 What does the directive .cdecls do?

5.1.20 What two non-alphanumeric characters are
allowed in a CCS assembly identifier?

5.1.21 What is a section?

5.1.22 Are instruction mnemonics case sensitive in
the CCS environment?

5.1.23 Are identifiers case sensitive in the CCS
environment?

Section 5.2: Your First Program: Blinking
LED
5.2.1 When you create a new blank assembly-only

project in CCS, a newmain.asm is created with
what three steps handled for you?

5.2.2 What three things does the debug command
do for you?

5.2.3 What is the name of the MSP430 header file?

5.2.4 What is the name of the reset vector section?

5.2.5 What comment text is inserted into the main.
asm to let you know where to insert your
program?

Section 5.3: Using the CCS Debugger
5.3.1 What does the resume command do?

5.3.2 What does the suspend command do?

5.3.3 What does the terminate command do?

5.3.4 After entering debug mode, the program is
downloaded to the LaunchPad™ board, but it
is not running. What is an alternative way to
make the program run without issuing a
resume command?

5.3.5 What is the purpose of a breakpoint?

5.3.6 If you insert a breakout on the line of an instruc-
tion, does the program stop before or after the
instruction on that line is executed?

5.3.7 In the Register Viewer, under what item name
are the CPU registers listed?

5.3.8 In the memory browser, what is the number
syntax to use if you want to go look at address
2000h?

5.3.9 What does stepping your program do?

5.3.10 What is the difference between Step Into and
Step Over?
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Chapter 6: Data Movement
Instructions

This chapter delves deeper into the details of the primary data movement instructions within the
MSP430 [1]. As soon as we start using an instruction where we need to specify locations of CPU
registers or memory locations, the concept of an addressing mode needs to be introduced. As such, the
majority of this chapter looks at the seven addressing modes available in the MSP430 CPU and how they
are used with the mov instruction. It is intended that the reader is coding the examples using the
MSP430FR2355 LaunchPad™ board as they go through this chapter.

Learning Outcomes—After completing this chapter you will be able to:

6.1 Use register mode addressing to copy data between CPU registers.
6.2 Use immediate mode addressing to put constants into registers and memory.
6.3 Use absolute mode addressing to access memory.
6.4 Use symbolic mode addressing to access memory.
6.5 Use indirect register mode addressing to access memory.
6.6 Use indirect autoincrement mode addressing to access memory.
6.7 Use index mode addressing to access memory.

6.1 The MOV Instruction with Register Mode (Rn) Addressing

The move instruction has a mnemonic of mov and is the primary instruction to copy information
within the computer system. While the instruction is named “move,” it actually performs a copy operation.
This instruction has an operand format of src, dstwhere the src is the location of where the information
is to be copied from, and the dst is the location of where the information is to be copied to. The src and dst
can either be CPU registers or locations in memory. The move instruction performs both 16-bit and 8-bit
operations, dictated by the extensions .w and .b. If no extension is used, the instruction is assumed to be
a 16-bit operation.

An addressing mode is the way that the src and dst locations are specified in the operand of an
instruction. The MSP430 provides seven different addressing modes. The best way to learn these
modes is to experiment with each while observing how the addresses are formed and data is moved
in the CCS debugger. We will begin with register mode addressing. In register mode addressing, the
operand for either the source or destination are CPU registers. The register names are provided using
their unique identifiers (i.e., PC, SR, SP, R4, R5, . . . ., R15). The instruction operates on the data held
within the register names provided. The syntax to denote register mode addressing in the MSP430
documentation is Rn. Follow Example 6.1 to gain experience with how register mode addressing works
when programming in assembly. This example copies the values of PC and SP into the other general-
purpose registers. PC and SP are used because they are initialized by the rest of the CCS automatically
generated main.asm prior to entering the main loop.
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Example 6.1
Register mode addressing
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CONCEPT CHECK

CC6.1 When executing an instruction using register mode addressing, is there any point during
the execution that memory is accessed if the intent of the instruction is to move data only between
CPU registers?

A) Yes. Even though register mode addressing only moves data within the CPU,
every instruction has to access memory at least once in order to fetch its
op-code.

B) No. There is no need to access memory because data is only moved within
the CPU.

6.2 The MOV Instruction with Immediate Mode (#N) Addressing

In immediate mode addressing, the operand for the src is a numeric constant. Since the operand
now contains a number that could be interpreted as either a constant or address, there needs to be a way
to indicate how the number is to be used. In immediate mode, a # is placed in front of the number to
indicate it is to be used as a constant. Follow Example 6.2 to experiment with immediate mode
addressing. Notice in this example that we are now mixing two types of addressing modes. The src in
all of the mov instructions uses immediate mode, while the destination address uses register mode. This
is perfectly acceptable for the mov instruction but does bring up some limitations on where certain
addressing modes can be used. We cannot use immediate mode for the dst because it wouldn’t make
sense to move a numerical constant into another numerical constant because the immediate mode
constant in the src is not a storage element of any type. The constant is instead embedded as part of the
operand code in program memory. This means immediate mode is only valid for the src field of the
operation. This brings up the fact that not all modes are valid in both the src and dst fields. Limitations of
subsequent addressing modes will be highlighted.
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CONCEPT CHECK

CC6.2 Can immediate mode addressing be used for the dst? Why or why not?

A) Yes. All addressing modes are supported for both the src and dst.

B) No. It doesn’t make sense to move a number into a number.

Example 6.2
Immediate mode addressing
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6.3 The MOV Instruction with Absolute Mode (&ADDR) Addressing

In absolute mode addressing, the src and/or dst is a 16-bit address value. This mode is the first to
allow us to access the memory system of the MSP430. This mode only supports 16-bit addressing,
meaning it can access 216 ¼ 65,536 unique address locations (i.e., address 010 ! 65,53510 or 000016 !
FFFF16). This is often stated in the MSP430 documentation as being able to access the first 64K
addresses in memory. Recall that “64K” is shorthand for the actual value 65,536. The term absolute
means that the address provided is the actual address to access and not a variable name or label. To
denote that we are providing an absolute address, the value must be preceded by an &. Addresses are
most commonly listed in hexadecimal format due to their large sizes. It is important to remember to
precede hex values that start with a letter with a “0” or the assembler will interpret the value as a symbol
and not a number. Follow Example 6.3 to gain experience with absolute mode addressing. Note that
since we are beginning to move information into and out of memory, we will need to use the .data
directive to allocate some variable space in data memory. Example 6.3 also shows how to allocate and
initialize memory.
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Example 6.3
Absolute mode addressing
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CONCEPT CHECK

CC6.3 If absolute addressing uses a numeric address, why don’t we just list the number of the
address and skip the & sign?

A) Since hex numbers can start with letters, we need a way to distinguish letters
that represent address values versus letters that represent address labels.

B) It really doesn’t matter if you use the & sign. The assembler will figure out
whether the operand is an absolute address or an address label.

C) Since absolute addressing can also be used to access CPU registers, we
need a way to distinguish between registers and memory locations.

D) The answer to this concept check is A.

6.4 The MOV Instruction with Symbolic Mode (ADDR) Addressing

One of the downsides of absolute mode addressing covered in Sect. 6.3 is that the developer needs
to keep track of the exact address values being used in memory. This becomes very difficult as programs
get larger and multiple developers are involved. In order to overcome this issue, assemblers support the
use of address labels. An address label is a sequence of characters that identifies a location in memory.
This can be thought of as a unique name associated with an address location. The MSP430 allows the
use of address labels as operands in symbolic mode. In symbolic mode, the address label is simply
inserted in either the src or dst fields without any preceding indicator (i.e., no “&” is needed as in absolute
mode). If the assembler sees any non-numeric character in an operand, it treats it as an address label.
This is why when we use hex constant literal, we need to precede values starting with letters with a 0 (i.e.,
ABCDh must be entered as 0ABCDh). Symbolic mode supports labels for 16-bit addresses so that just
like absolute mode, it can only access memory between 0 ! 65,535 and 0000h ! FFFFh. Follow
Example 6.4 to gain some experience with symbolic mode. Note that this example is functionally
identical to Example 6.3 with the exception that address labels are used to access data memory instead
of absolute addresses.
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Example 6.4
Symbolic mode addressing
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CONCEPT CHECK

CC6.4 Can symbolic mode addressing be used to access CPU registers?

A) Yes. Since the operand is simply an alphanumeric identifier, CPU registers are
legal.

B) No. Symbolic addressing is only for address labels. If you enter the name of a
CPU register as an operand, it will use register mode addressing.

6.5 The MOV Instruction with Indirect Register Mode (@Rn) Addressing

In indirect register mode, a CPU register is used to provide the address of where the information to
be accessed is stored. This is the same concept as a pointer in the language C. The motivation for
providing the address in this way is that the CPU register can be modified by subsequent instructions.
This provides a way to access blocks of memory by incrementing the address pointer in a loop. To
indicate that a register is to be used as an address pointer, an @ is inserted before the register name. In
order to use indirect register mode, the program must first initialize the register to be used with the
address of where the information is stored using a separate instruction, typically a mov. Indirect register
mode is only valid in the src of an instruction. This mode supports full 20-bit addressing, meaning it can
access 220 ¼ 1,048,576 unique address locations (i.e., address 0 ! 1,048,575 or 00000h ! FFFFFh).
This is often stated in the MSP430 documentation as being able to access the first 1M addresses in
memory. Recall that “1M” is shorthand for the actual value 1,048,576; however, keep in mind that the
MSP430FR2355 MCU only has a 64 kB memory system, so 20-bit addressing will never be used in this
book. Indirect register mode is the reason that the MSP430 registers are actually 20-bits wide. Indirect
register mode is only allowed in the src. Follow Example 6.5 to gain experience using indirect register
mode.
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Example 6.5
Indirect register mode addressing
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CONCEPT CHECK

CC6.5 Can I use the PC and SP in indirect register mode addressing?

A) Yes. All CPU registers can be used to hold addresses; go for it.

B) No. While PC and SP hold addresses, they are dedicated for other purposes. If
you use them you will mess up the operation of the CPU.

6.6 The MOV Instruction with Indirect Autoincrement Mode (@Rn+)
Addressing

One useful behavior of indirect register mode is its amenability to access large blocks of information
in memory by incrementing the address pointer in a loop. For example, consider a mov instruction that is
placed inside of a looping structure that repeats n-times. If after the mov instruction completes, the
pointing register is incremented to the next location in memory, the loop can repeat, and the next time the
mov instruction is executed, it will access the next location in memory. In this way, a block of information
in memory that is n-words long can be copied or modified within a loop. This functionality is such a
common use of indirect register mode that the MSP430 actually contains a dedicated addressing mode
to automate the process of incrementing the pointer register. In indirect autoincrementmode, the pointing
register is automatically incremented after the completion of the instruction. The pointing register can be
incremented by 1 or 2 depending on the type of the size of the operation dictated by .w and .b. Indirect
autoincrement mode is only allowed in the src. Follow Example 6.6 to gain experience with indirect
autoincrement mode addressing.
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Example 6.6
Indirect autoincrement mode addressing
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CONCEPT CHECK

CC6.6 Is it possible to accomplish the same functionality as indirect autoincrement mode using
indirect register mode? If so, how?

A) Yes. You would simply need to add an increment instruction after the instruc-
tion using indirect register mode.

B) No.

6.7 The MOV Instruction with Indexed Mode (X(Rn)) Addressing

Indexed register mode is similar to indirect register mode in that a register name is provided that
holds the address of where to access the information. Index register mode extends this functionality by
allowing a numeric constant to be added to the contents of the register. This constant is called an offset.
The offset is a 16-bit, signed number that can be provided in any base. The syntax to indicate indexed
register mode is to put the name of the register in parenthesis with the numeric constant in front (i.e.,
X(RN)). Indexed addressing is useful when accessing blocks of data in memory where the offset between
blocks can be calculated. Indexed mode works in both the src and dst. Follow Example 6.7 to gain
experience with indexed mode addressing.
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Example 6.7
Indexed mode addressing

184 • Chapter 6: Data Movement Instructions



CONCEPT CHECK

CC6.7 Would it be possible to calculate the offset between two addresses for use in indexed
addressing?

A) Yes. You would simply need to subtract the smaller address from the larger
address.

B) No. MCUs don’t have the ability to perform subtraction. (Hint: MCUs abso-
lutely can perform subtraction.)

Table 6.1 gives a summary of the seven addressing modes used on the MS430.

Summary

v A move instruction has a mnemonic of mov
and an operand of src, dst. While called a
move, this instruction actually copies the
information from the src into the dst.

v An addressing mode is the way that the
locations of the src and dst are provided for
the instruction. The MSP430 provides seven
different addressing modes.

v Register mode addressing uses the CPU
names for the src and/or dst (i.e., PC, R4,
and R5).

v Immediate mode addressing provides a
numeric constant for the src. This mode is
indicated by preceding the numeric constant
with a #.

v Absolute mode addressing uses a numeric
address in the src and/or dst. This mode is

Table 6.1
MSP430 addressing mode summary
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indicated by preceding the address with an
ampersand (&).

v Symbolic mode addressing uses an address
label in the src and/or dst. No special syntax
is needed for symbolic mode.

v Indirect register mode addressing uses a
CPU register to provide the address of
where the information to be accessed
resides. This mode is indicated by preceding
the register name with an @. This mode is
only valid in the src.

v Indirect autoincrement mode works the same
as indirect register mode with the additional
feature that after memory is accessed, the

address register is incremented. This mode
is indicated by preceding the register name
with an @ and adding a + afterward. This
mode is only valid in the src.

v Indexed mode addressing works the same
as indirect register mode, except a numeric
constant can be applied to the register to
form the absolute address. This mode is
indicated by placing the address register
within parenthesis and a numeric offset
before the parenthesis. This mode is valid in
both the src and dst.

Exercise Problems

Figure 6.1 provides the initial values of CPU registers and memory that will be used in some of
the exercise problems.

Section 6.1: The MOV Instruction with
Register Mode (Rn) Addressing
6.1.1 Provide the new value of R8 if the following

instruction is executed:

mov R4, R8

6.1.2 Provide the new value of R8 if the following
instruction is executed:

mov.w R4, R8

6.1.3 Provide the new value of R8 if the following
instruction is executed:

mov.b R4, R8

6.1.4 Provide the new value of R9 if the following
instruction is executed:

mov R5, R9

6.1.5 Provide the new value of R9 if the following
instruction is executed:

mov.w R5, R9

Fig. 6.1
Initial values of CPU registers and memory for exercise problems
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6.1.6 Provide the new value of R9 if the following
instruction is executed:

mov.b R5, R9

6.1.7 Provide the instruction that will move the value
in R4 into R6.

6.1.8 Provide the instruction that will move the value
in R5 into R7.

6.1.9 Provide the instruction that will move the value
in R4 into R8.

6.1.10 Provide the instruction that will move the value
in R5 into R9.

Section 6.2: The MOV Instruction with
Immediate Mode (#N) Addressing
6.2.1 Provide the new value of R8 if the following

instruction is executed:

mov.w #3711h, R8

6.2.2 Provide the new value of R8 if the following
instruction is executed:

mov.w #0A999h, R8

6.2.3 Provide the new value of R8 if the following
instruction is executed:

mov.b #67h, R8

6.2.4 Provide the new value of R8 if the following
instruction is executed:

mov.w #100, R8

6.2.5 Provide the new value of R8 if the following
instruction is executed:

mov.w #371, R8

6.2.6 Provide the instruction that will put the numeric
value 123416 into R6.

6.2.7 Provide the instruction that will put the numeric
value ABCD16 into R7.

6.2.8 Provide the instruction that will put the numeric
value 9910 into R8.

6.2.9 Provide the instruction that will put the numeric
value 11002 into R9.

6.2.10 Provide the instruction that will put the numeric
value 11002 into R10.

Section 6.3: The MOV Instruction with
Absolute Mode (&) Addressing
6.3.1 Using the values from Fig. 6.1, provide the new

value of R15 if the following instruction is
executed:

mov &2000h, R15

6.3.2 Using the values from Fig. 6.1, provide the new
value of R15 if the following instruction is
executed:

mov.w &2002h, R15

6.3.3 Using the values from Fig. 6.1, provide the new
value of R15 if the following instruction is
executed:

mov.b &2004h, R15

6.3.4 Using the values from Fig. 6.1, provide the new
value of R15 if the following instruction is
executed:

mov &200Ah, R15

6.3.5 Using the values from Fig. 6.1, provide the new
value of R15 if the following instruction is
executed:

mov.w &200Ch, R15

6.3.6 Using the values from Fig. 6.1, provide the new
value of R15 if the following instruction is
executed:

mov.b &200Eh, R15

6.3.7 Using the values from Fig. 6.1, provide the new
value of R15 if the following instruction is
executed:

mov.b &2001h, R15

6.3.8 Using the values from Fig. 6.1, provide the new
value of R15 if the following instruction is
executed:

mov.b &200bh, R15

6.3.9 Using the values from Fig. 6.1, provide the new
value of R15 if the following instruction is
executed:

mov.w &2001h, R15

6.3.10 Using the values from Fig. 6.1, provide the new
value of R15 if the following instruction is
executed:

mov.w &200bh, R15

Section 6.4: The MOV Instruction with
Symbolic Mode Addressing
6.4.1 Using the values from Fig. 6.1, provide the new

value of R7 if the following instruction is
executed:

mov Con3, R7

6.4.2 Using the values from Fig. 6.1, provide the new
value of R7 if the following instruction is
executed:

mov.w Con7, R7

6.4.3 Using the values from Fig. 6.1, provide the new
value of R7 if the following instruction is
executed:

mov.b Con1, R7

6.4.4 Using the values from Fig. 6.1, provide the new
value of R7 if the following instruction is
executed:

mov Con2, R7

6.4.5 Using the values from Fig. 6.1, provide the new
value of R7 if the following instruction is
executed:

mov.w Con6, R7

6.4.6 Using the values from Fig. 6.1, provide the new
value of R7 if the following instruction is
executed:

mov.b Con0, R7
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Section 6.5: The MOV Instruction with Indi-
rect Register Mode (@Rn) Addressing
6.5.1 Using the values from Fig. 6.1, provide the new

value of R9 if the following instruction is
executed:

mov @R4, R9

6.5.2 Using the values from Fig. 6.1, provide the new
value of R9 if the following instruction is
executed:

mov.w @R4, R9

6.5.3 Using the values from Fig. 6.1, provide the new
value of R9 if the following instruction is
executed:

mov.b @R4, R9

6.5.4 Using the values from Fig. 6.1, provide the new
value of R8 if the following instructions are
executed:

mov.w #200Ah, R7
mov.w @R7, R8

6.5.5 Using the values from Fig. 6.1, provide the new
value of R8 if the following instructions are
executed:

mov.w #200Ah, R7
mov.b @R7, R8

6.5.6 Using the values from Fig. 6.1, provide the new
value of R8 if the following instructions are
executed:

mov.w #200Ch, R7
mov.w @R7, R8

6.5.7 Using the values from Fig. 6.1, provide the new
value of R8 if the following instructions are
executed:

mov.w #200Ch, R7
mov.b @R7, R8

6.5.8 Using the values from Fig. 6.1, provide the new
value of R8 if the following instructions are
executed:

mov.w #200Eh, R7
mov.w @R7, R8

6.5.9 Using the values from Fig. 6.1, provide the new
value of R8 if the following instructions are
executed:

mov.w #200Eh, R7
mov.b @R7, R8

Section 6.6: The MOV Instruction with
Indirect Autoincrement Mode (@Rn+)
Addressing
6.6.1 Using the values from Fig. 6.1, provide the new

value of R9 if the following instruction is
executed:

mov.w @R4+, R9

6.6.2 Using the values from Fig. 6.1, provide the new
value of R4 after following instruction is
executed:

mov.w @R4+, R9

6.6.3 Using the values from Fig. 6.1, provide the new
valueofR9 if the following instruction is executed:

mov.b @R4+, R9

6.6.4 Using the values from Fig. 6.1, provide the new
valueofR4after following instruction is executed:

mov.b @R4+, R9

6.6.5 Using the values from Fig. 6.1, provide the new
value of R7 after following instructions are
executed:

mov.w @R4+, R5

mov.w @R4+, R6

mov.w @R4+, R7

6.6.6 Using the values from Fig. 6.1, provide the new
value of R4 after following instructions are
executed:

mov.w @R4+, R5

mov.w @R4+, R6

mov.w @R4+, R7

6.6.7 Using the values from Fig. 6.1, provide the new
value of R9 after following instructions are
executed:

mov.w @R4+, R7

mov.w @R4+, R8

mov.w @R4+, R9

6.6.8 Using the values from Fig. 6.1, provide the new
value of R4 after following instructions are
executed:

mov.w @R4+, R5

mov.w @R4+, R6

mov.w @R4+, R7

6.6.9 Using the values from Fig. 6.1, provide the new
value of R7 after following instructions are
executed:

mov.b @R4+, R5

mov.b @R4+, R6

mov.b @R4+, R7

6.6.10 Using the values from Fig. 6.1, provide the new
value of R4 after following instructions are
executed:

mov.b @R4+, R5

mov.b @R4+, R6

mov.b @R4+, R7

6.6.11 Using the values from Fig. 6.1, provide the new
value of R9 after following instructions are
executed:

mov.b @R4+, R7

mov.b @R4+, R8

mov.b @R4+, R9

6.6.12 Using the values from Fig. 6.1, provide the new
value of R4 after following instructions are
executed:

mov.b @R4+, R5

mov.b @R4+, R6

mov.b @R4+, R7
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Section 6.7: The MOV Instruction with
Indexed Mode (X(Rn)) Addressing
6.7.1 Using the values from Fig. 6.1, provide the new

valueofR7after following instruction is executed:

mov.w 2(R4), R7

6.7.2 Using the values from Fig. 6.1, provide the new
valueofR7after following instruction is executed:

mov.w 6(R4), R7

6.7.3 Using the values from Fig. 6.1, provide the new
valueofR7after following instruction is executed:

mov.w 4(R4), R7

6.7.4 Using the values from Fig. 6.1, provide the new
valueofR7after following instruction is executed:

mov.w 0(R4), R7

6.7.5 Using the values from Fig. 6.1, provide the new
value at label VarX after following instruction is
executed:

mov.w 12(R4), 0(R5)

6.7.6 Using the values from Fig. 6.1, provide the new
value at label VarX after following instruction is
executed:

mov.w 10(R4), 0(R5)

6.7.7 Using the values from Fig. 6.1, provide the new
value at label VarX after following instruction is
executed:

mov.w 14(R4), 0(R5)

6.7.8 Using the values from Fig. 6.1, provide the new
value at label VarX after following instruction is
executed:

mov.w 8(R4), 0(R5)

6.7.9 Using the values from Fig. 6.1, provide the new
value at label VarX after following instruction is
executed:

mov.w 4(R4), 16(R4)

6.7.10 Using the values from Fig. 6.1, provide the new
value at label VarX after following instruction is
executed:

mov.w 2(R4), 16(R4)
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Chapter 7: Data Manipulation
Instructions

This chapter introduces the MSP430 data manipulation instructions performed by the ALU and the
impact on the corresponding status bits in the status register [1]. Examples are provided for some of the
data manipulation instructions to help in understanding how ALU operations work and how the SR is
updated. It is intended that the reader is coding the examples using the MSP430FR2355 LaunchPad™
board as they go through this chapter.

Learning Outcomes—After completing this chapter you will be able to:

7.1 Use arithmetic instructions to manipulate data within the CPU and explain how the status
flags are altered.

7.2 Use logic instructions to manipulate data within the CPU and explain how the status flags
are altered.

7.3 Use bit set and bit clear instructions to set and clear individual bits within an operand.
7.4 Use test instructions to determine information about an operand from the status bits.
7.5 Explain the operation of rotate arithmetic and rotate through carry instructions.

7.1 Arithmetic Instructions

The ALU can be thought of as a collection of combinational logic circuits, each that can perform a
desired operation on the data coming from CPU registers. For every operation that is desired when
designing the CPU, a new circuit is inserted into the ALU. Every effort is taken to try to optimize the
amount of logic in the ALU, but conceptually, instructions that use the ALU can be thought of as
accessing separate circuits. The output of the ALU is not registered, so its output must be put back
into either a CPU register or memory. A key feature of the ALU is that it has circuits that monitor the
operations and produce status flags (or status bits). These flags are stored back into the status register in
the CPU and then can potentially be used by subsequent instructions. The flags are two’s complement
overflow (V), negative (N), zero (Z), and carry (C). Each of these flags is asserted when the condition
exists. The carry flag can also be used to indicate a borrow when performing subtraction. Figure 7.1
shows a conceptual model of the ALU and SR.

# The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. J. LaMeres, Embedded Systems Design using the MSP430FR2355 LaunchPad™,
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7.1.1 Addition Instructions

The add instruction performs binary addition on two inputs, the src and dst, and puts the sum back
into the dst (i.e., src + dst ! dst). The four status flags are updated in this operation. This operation can
be performed on both 8-bit and 16-bit words by appending .w or .b. This operation works the same
regardless of whether the src or dst is treated as unsigned or signed numbers. Follow Example 7.1 to
gain some experience using the add instruction.

Fig. 7.1
ALU and status register operation
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One of the limitations of the add instruction is that it only operates on 16-bit words. When numbers
are larger than 16-bit words, a different algorithm must be used. This is accomplished by adding the
lower 16-bit words of the input numbers first using add, and then including the carry that was potentially
generated in the addition of the next upper 16-bit words of the inputs. The addition of higher order words
that include the carry from prior additions is repeated until all of the bits in the inputs have been added.
The addc instruction gives us the functionality to include the carry in the addition. This instruction
performs src + dst + C ! dst. Follow Example 7.2 to see how numbers larger than 16 bits can be
added together with the functionality provided by the addc instruction.

Example 7.1
Using the ADD instruction
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Example 7.2
Using the ADDC instruction
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7.1.2 Subtraction Instructions

The sub instruction performs binary addition on two operands and puts the difference back into the
dst (i.e., dst – src ! dst). The four status flags are updated. This operation can be performed on both
8-bit and 16-bit words by appending .w or .b. This operation works the same regardless of whether the
src or dst is treated as unsigned or signed numbers. The MSP430 does not actually contain a subtraction
circuit; instead, it converts the src into its negative equivalent by performing two’s complement on it, and
then it adds the src to the dst. Taking advantage of A�B ¼ A+(�B) allows the ALU circuitry within the
MSP430 to be minimized. This approach is hidden from the end user, but understanding it helps us
understand how the carry flag is asserted. When C¼ 1, then no borrow was required for the subtraction,
while when C ¼ 0, a borrow was required. Figure 7.2 gives a description of how the subtraction works
and how the C-flag is asserted.

Fig. 7.2
Explanation of subtraction and the C-flag
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Now let’s see if this works in assembly. Follow Example 7.3 to view how the sub instruction works
and how the C-flag is asserted.

The subc instruction is used when subtracting numbers that are larger than 16-bit words. This is
accomplished by subtracting the lower 16-bit words of the input numbers first using sub and then
including the borrow that was potentially generated in the subtraction of the next upper 16-bit words of
the inputs. The subtraction of higher-order words that include the borrow from prior subtractions is
repeated until all of the bits in the inputs have been subtracted. The MSP430 tracks borrows using the
C-flag. The logic is if C¼ 0, then a borrow occurred. If C¼ 1, then no borrow occurred. See Fig. 7.2 for an
explanation of this logic. The description of the subc instruction is dst – src – not(C) ! dst. Follow
Example 7.4 to see how numbers larger than 16 bits can be subtracted with the functionality provided by
the subc instruction.

Example 7.3
Using the SUB instruction
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Example 7.4
Using the SUBC instruction
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7.1.3 Increments and Decrements

The inc and incd instruction will increment a storage location by 1 and 2, respectively. The dec

and decd will decrement a storage location by 1 and 2, respectively. Follow Example 7.5 to see how
these instructions work and also how they are useful for moving through a block of memory.

Example 7.5
Using the INC, INCD, DEC, and DECD instructions
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CONCEPT CHECK

CC7.1 When incrementing through 16-bit words of data in memory, which increment would be
best suited for updating a register holding the address of the data?

A) INC. Wewant to step through each piece of information in memory one by one.

B) INCD. Since 16-bit words are aligned to even addresses in the MSP430
memory system, we need to increment by 2 if we want to access the data
16-bits at a time.

7.2 Logic Instructions

The MSP430 provides three basic logic operations: inv, and, and xor. The CCS environment also
supports the mnemonic or, which it will substitute with the bis instruction (next section). The inv

instruction performs an inversion on each bit of the operand (!dst ! dst). The and operation performs
a logical AND on the two operands and places the result back into the dst (src AND dst ! dst). The or

operation performs a logical OR on the two operands and places the result back into the dst (src OR dst
! dst). The xor operation performs an exclusive-or operation on the src and dst and places the result
back into the dst (src XOR dst! dst). These operations are called bitwise operations because they take
place on the individual bits of the src and dst independent of each other. For example, for an and

operation, bit 0 of the src will be AND’d with bit 0 of the dst, bit 1 of the src will be and’d with bit 1 of the
dst, etc.

With these logic operations, we are now able to accomplish bit masking. Bit masking refers to the act
of setting, clearing, toggling, or testing the value of a bit within a word. Bit masking is such a common task
within an MCU that the MSP430 contains dedicated instructions to perform these tasks. Understanding
the logic behind those instructions is useful, so we will look at bit masking using the and, or, and xor

instructions.

Let’s start with what we can do with the and instruction. A logical AND will produce a 1 only when
both inputs are a 1; otherwise it will produce a 0. Thus, we can use the AND operation with a 0 to clear
any bit within a word. A mask is a bit pattern that is used to indicate which bit we wish to manipulate.
When using a mask with an AND, the mask indicates which bit(s) to clear and which to preserve. Any
position within the mask that contains a 0 will result in the corresponding bit in the dst being cleared. Any
position within the mask that contains a 1 will simply leave the original value within the dst. Figure 7.3
shows a graphical depiction of using the AND operation and a mask to clear bits in the dst.
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An AND operation with a mask can also check whether a particular bit(s) is a 1. This is accomplished
by using a mask with a 1 in the position of interest and 0 s everywhere else. The 0 s of the mask will clear
all bits except the position of interest. If the position of interest is a 0, then the entire dst word will be a
0 and the Z-flag will be asserted (Z ¼ 1). If the position of interest is a 1, then the entire dst word will NOT
be a 0, and the Z-flag will not be asserted (Z ¼ 0). We can use the Z-flag to answer the question as to
whether the position of interest was a 1 or a 0. Figure 7.4 shows a graphical depiction of using the AND
operation and a mask to test whether a particular bit is a 0 in the dst.

Fig. 7.3
Using an AND operation and a mask to clear bits

Fig. 7.4
Using an AND operation and a mask to test whether bits are 1 s
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If we wish to test whether a bit in the dst is a 0, we can first complement the dst using the inv

instruction and then use the same AND operation and mask as in Fig. 7.4.

Now let’s see what type of masking we can do with the or instruction. A logical OR will produce a
1 when either of the bits of the inputs is a 1. OR’ing with a 0 preserves the original value of the dst. Thus,
we can use the OR operation with a 1 to set any bit within a word. When using a mask with an OR, the
mask indicates which bit(s) to set and which to preserve. Any position within the mask that contains a
1 will result in the corresponding bit in the dst being set. Any position within the mask that contains a 0 will
simply leave the original value within the dst. Figure 7.5 shows a graphical depiction of using the OR
operation and a mask to set bits in the dst.

The xor instruction can be used to toggle bits within the dst. When XOR’ing a dst bit with a 0, the dst
bit will remain unchanged. When XOR’ing a dst bit with a 1, the dst bit will be complemented. Thus, if we
wish to toggle bit(s) in the dst, we simply XOR it with a mask where any bits to be toggled contain a 1 and
all other bits to be preserved are 0 s. Figure 7.6 shows a graphical depiction of using the XOR operation
and a mask to toggle bits in the dst.

Fig. 7.5
Using an OR operation and a mask to set bits

Fig. 7.6
Using an XOR operation and a mask to toggle bits
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Now let’s look at these instructions in assembly. Follow Example 7.6 to gain experience with these
logic operations and the concept of bit masks for clearing, testing, setting, and toggling.

Example 7.6
Using logic instructions to manipulate bits
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CONCEPT CHECK

CC7.2 Can we use an XOR operation to create the same functionality as an INV? If so, how?

A) No. XOR operations are bitwise, meaning that they operate on each bit
independent from the other bits. An INV complements the entire operand.

B) Yes. If we XOR’d an operand with a mask of all 1s, then each bit would be
toggled. This is the same functionality as an INV operation. In fact, the INV
instruction is actually emulated, and in reality, the MSP430 does use an XOR
operation to perform an inversion of an operand.

7.3 Bit Set and Bit Clear Instructions

Setting and clearing bits is such a common task in an MCU that the MSP430 provides dedicated
instructions to perform these operations. The bis (bit set) instruction will set the bits in the dst
corresponding to 1 s within the src operand mask. The bic (bit clear) instruction will clear the bits in
the dst corresponding to 1 s within the src operand mask. All bits within the mask for each instruction that
are 0 s will leave the dst bits unaltered. Providing the bits to be altered as 1 s within the mask make the
programming more straightforward. If we used the and instruction to perform bit clears, we would have to
create a mask that contained 0 s in the locations of the bits to be cleared and 1 s where bits were to be
preserved. This would result in a mask that was different for setting bit-n of a word versus clearing bit-n of
a word. By providing a masking approach that works the same for bis and bic, the same masks can be
used throughout the program to alter the same bit location. The bis and bic instructions work on both
16-bit words (.w) and 8-bit bytes (.b). While multiple addressing modes are supported for the src, the
common approach is to use immediate mode for the src mask. Follow Example 7.7 to see how the bit set
and bit clear instructions operate.
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CONCEPT CHECK

CC7.3What is the advantage of bit set/clear instructions over using AND/OR to perform sets and
clears?

A) Bit sets/clears allow the same mask to be used for both sets and clears.

B) There is no advantage. They act the same.

7.4 Test Instructions

Testing a bit or word is where you are trying to determine something about it such as whether a bit is
1, whether the value is 0, whether the value is negative, or whether the value is the same as another
number. The MSP430 provides three test instructions: bit, cmp, and tst. Each of these instructions is
unique in that it performs an operation using the values held in the dst and updates the VNZC flags;

Example 7.7
Using BIS and BIC to set and clear bits
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however, it does not alter the value of the dst itself. This allows information to be determined about the dst
without destroying its contents.

The bit test (bit) instruction will perform a logical AND with the mask provided in the src and the
value held in the dst. This is used to determine whether certain bits within the dst are 1 s by checking the
Z-flag after the operation. If the bit location in the dst dictated by the mask is a 1, then the result of the
ANDwill be a value that is not 0 and the Z-flag will not be asserted (Z¼ 0). If the Z-flag is asserted (Z¼ 1),
then the bit value of interest in the dst was a 0.

The compare (cmp) instruction will subtract the src from the dst and update the status flags, but
leave the dst intact. This instruction is used to determine if the dst is equal to a specific value by checking
the Z-flag after the operation. If the src and dst are equal, the result of the subtraction will result in 0, and
the Z-flag will be asserted (Z ¼ 1). If the Z-flag is not asserted (Z ¼ 0), then the src and dst were not
the same.

The test (tst) instruction simply subtracts 0 from the dst and updates the status flags. This instruction
allows us to determine whether the value in the dst is 0 (Z ¼ 1) or negative (N ¼ 1).

Follow Example 7.8 to see how the bit, cmp, and tst instructions work.

Example 7.8
Using BIT, CMP, and TST to test values
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CONCEPT CHECK

CC7.4What is an example of when you need to use a test instruction to find out information about
an operand because you can’t, or don’t want, to alter that operand?

A) Reading from an input port. The input is what it is and isn’t altered by the
computer, but we often want to know information about the value of the input.

B) Using the value of an operand multiple times in a segment of code.

C) Both B & C.

7.5 Rotate Operations

The MSP430 also contains a variety of rotate instructions. Rotate instructions can be used to shift in
serial data into a parallel word, to sign extend negative numbers, or to perform multiply/divide by two
arithmetic operations. Figure 7.7 shows a graphical description of the four main rotate instructions: rla,
rra, rlc, and rrc.

Fig. 7.7
Graphical depiction of MSP430 rotate instructions
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Follow Example 7.9 to see how the rotate arithmetically instructions work.

Example 7.9
Using rotate arithmetically
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Follow Example 7.10 to see how the rotate through carry instructions work.

Rotate instructions provide the ability to perform simply multiply-by-2 and divide-by-2 operations.
When a binary number is rotated to the left by one bit and the vacated LSB position is filled with a 0, it
doubles the original value. When a binary number is rotated to the right by one bit and the vacated MSB
position is filled with a 0, it has the original value. Follow Example 7.11 to see how this multiply-by-2 and
divide-by-2 functionality is implemented using rotates.

Example 7.10
Using rotate through carry
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CONCEPT CHECK

CC7.5 What constraint do you need to keep in mind when using rotates to perform multiply-by-
2 or divide-by-2?

A) You need to make sure that bits of the number aren’t being rotated out of the
register. When this happens, the value is either incorrect or has diminished
accuracy.

B) You can only use this technique on even numbers, so you need to monitor the
input value to ensure it is a valid number to be operated on.

C) You can only use this technique on odd numbers, so you need to monitor the
input value to ensure it is a valid number to be operated on.

D) You need to be careful that the other bits in the status register aren’t acci-
dentally included in the shift.

Example 7.11
Using rotate to multiply and divide by 2
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Summary

v The MSP430 ALU performs a variety of
operations. Each operation can be thought
of as an independent combinational logic cir-
cuit that is selected for use by the control unit.

v The ALU instructions set the VNZC flags in
the status register to provide information
about the result of the operation.

v The addition instruction (add) works the
same on unsigned versus signed numbers.
It is up to the programmer to decide how to
treat the binary values.

v The add with carry instruction (addc) allows
numbers to be added that are larger than the
16-bit ALU can handle. The larger numbers
are broken down into 16-bit words, and then
the carry from prior additions is included in
the next higher addition using the addc
instruction.

v The subtraction instruction (sub) will modify
the C-flag to indicate whether a borrow
occurred. The logic is if C¼ 1, then no borrow
occurred, while if C ¼ 0, then a borrow did
occur. The C-flag logic is due to the way that
the MSP430 performs subtraction by taking
the two’s complement of the src and then
adding it to the dst.

v The subtract with carry instruction (subc)
allows numbers to be subtracted that are
larger than the 16-bit ALU can handle. The
larger numbers are broken down into 16-bit
words, and then the borrow from a prior sub-
traction is included in the next higher subtrac-
tion using the subc instruction.

v Increment (inc) and decrement (dec)
instructions add or subtract 1 from the dst,
respectively.

v Increment double (incd) and decrement
double (decb) instructions add or subtract
2 from the dst, respectively. These
instructions are useful when accessing
16-bit words in memory that are aligned to
even addresses.

v The MSP430 provides the logic operation
mnemonics inv, and, or, and xor. These
are considered bitwise operations because
the individual bits of the src and/or dst are
acted on independently from one another.

v A bit mask can be used with the and, or, and
xor instructions to clear, set, or toggle indi-
vidual bits of the dst. The and instruction can
be used to clear bits. The or operation can
be used to set bits. The xor operation can be
used to toggle bits.

v Setting and clearing bits is such a common
operation in an MCU that the MSP430
provides dedicated instructions for it. The
bis and bic instructions will set and clear
bits in the dst based on the location of 1 s in
the src. The most common use model for
these instructions is to provide a bit mask in
the src using immediate addressing.

v The MSP430 provides test instructions that
will provide information about the dst, but not
change the value of the dst. The bit instruc-
tion will perform a bitwise of the src and dst.
The cmp instruction will subtract the src from
the dst. The tst instruction will subtract
0 from the dst. Information about the dst is
indicated by the values of the VNZC bits in
the status register.

v The MSP provides four types of rotate
instructions. Rotate left/right arithmetically
instructions (rla, rca) will shift the dst and
fill in the vacated bit position with 1 s or 0 s.
The rotate left/right through carry instructions
(rlc, rrc) will shift the dst in a complete
loop. All shifts use the C-flag as another bit
within the shift.

v Rotates can be used to perform simple multi-
ply-by-2 and divide-by-2 operations on
the dst.

Exercise Problems

Section 7.1: Arithmetic Instructions
7.1.1 Is the C-flag asserted after the following

instructions are executed?

mov.b #99, R4
add.b #1, R4

7.1.2 Is the Z-flag asserted after the following
instructions are executed?

mov.b #99, R4
add.b #1, R4

7.1.3 Is the N-flag asserted after the following
instructions are executed?

mov.b #99, R4
add.b #1, R4

7.1.4 Is the C-flag asserted after the following
instructions are executed?

mov.b #255, R4
add.b #1, R4
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7.1.5 Is the Z-flag asserted after the following
instructions are executed?

mov.b #255, R4
add.b #1, R4

7.1.6 Is the N-flag asserted after the following
instructions are executed?

mov.b #255, R4
add.b #1, R4

7.1.7 Is the C-flag asserted after the following
instructions are executed?

mov.w #255, R4
add.w #1, R4

7.1.8 Is the Z-flag asserted after the following
instructions are executed?

mov.w #255, R4
add.w #1, R4

7.1.9 Is the N-flag asserted after the following
instructions are executed?

mov.w #255, R4
add.w #1, R4

7.1.10 Is the C-flag asserted after the following
instructions are executed?

mov.b #255, R4
sub.b #1, R4

7.1.11 Is the Z-flag asserted after the following
instructions are executed?

ov.b #255, R4
sub.b #1, R4

7.1.12 Is the N-flag asserted after the following
instructions are executed?

mov.b #255, R4
sub.b #1, R4

7.1.13 Is the C-flag asserted after the following
instructions are executed?

mov.b #1, R4
sub.b #255, R4

7.1.14 Is the Z-flag asserted after the following
instructions are executed?

mov.b #1, R4
sub.b #255, R4

7.1.15 Is the N-flag asserted after the following
instructions are executed?

mov.b #1, R4
sub.b #255, R4

Section 7.2: Logic Instructions
7.2.1 What bit positions (7 to 0) in R4 will be inverted

when the following INV operation is executed?

inv.b R4

7.2.2 What bit positions (7 to 0) in R4 will be cleared
when the following AND operation is
executed?

and.b #01111110b, R4

7.2.3 What bit positions (7 to 0) in R4 will be set
when the following OR operation is executed?

or.b #01111110b, R4

7.2.4 What bit positions (7 to 0) in R4 will be toggled
when the following XOR operation is
executed?

xor.b #01111110b, R4

7.2.5 What bit positions (7 to 0) in R4 will be cleared
when the following AND operation is
executed?

and.b #8, R4

7.2.6 What bit positions (7 to 0) in R4 will be set
when the following OR operation is executed?

or.b #16, R4

7.2.7 What bit positions (7 to 0) in R4 will be toggled
when the following XOR operation is
executed?

xor.b #21, R4

Section 7.3: Bit Set and Bit Clear
Instructions
7.3.1 What bit positions (7 to 0) in R4 will be cleared

when the following instruction is executed?

bitc.b #11110000b, R4

7.3.2 What bit positions (7 to 0) in R4 will be set
when the following instruction is executed?

bits.b #00000011b, R4

7.3.3 What bit positions (7 to 0) in R4 will be cleared
when the following instruction is executed?

bitc.b #1, R4

7.3.4 What bit positions (7 to 0) in R4 will be set
when the following instruction is executed?

bits.b #2, R4

7.3.5 What bit positions (7 to 0) in R4 will be
cleared when the following instruction is
executed?

bitc.w #256, R4

7.3.6 What bit positions (7 to 0) in R4 will be set
when the following instruction is executed?

bits.w #513, R4

Section 7.4: Test Instructions
7.4.1 Is the Z-flag asserted after the following

instructions are executed?

mov.b #11110011b, R4
bit.b #11110011b, R4

7.4.2 Is the Z-flag asserted after the following
instructions are executed?

mov.b #11110011b, R4
bit.b #00001100b, R4
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7.4.3 Is the Z-flag asserted after the following
instructions are executed?

mov.b #11110011b, R4
bit.b #4, R4

7.4.4 Is the Z-flag asserted after the following
instructions are executed?

mov.b #11110011b, R4
bit.b #16, R4

7.4.5 Is the Z-flag asserted after the following
instructions are executed?

mov.b #16, R4
cmp.b #16, R4

7.4.6 Is the Z-flag asserted after the following
instructions are executed?

mov.b #11110000b, R4
cmp.b #00001111b, R4

7.4.7 Is the Z-flag asserted after the following
instructions are executed?

mov.b #0FFh, R4
cmp.b #255, R4

7.4.8 Is the Z-flag asserted after the following
instructions are executed?

mov.w #99h, R4
cmp.w #99, R4

7.4.9 Is the Z-flag asserted after the following
instructions are executed?

mov.b #10000000b, R4
tst.b R4

7.4.10 Is the N-flag asserted after the following
instructions are executed?

mov.b #10000000b, R4
tst.b R4

7.4.11 Is the Z-flag asserted after the following
instructions are executed?

mov.b #255, R4
tst.b R4

7.4.12 Is the N-flag asserted after the following
instructions are executed?

mov.b #255, R4
tst.b R4

Section 7.5: Rotate Instructions
7.5.1 What is the value in position 0 of R4 after the

following instructions have been executed?

mov.b #10000001b, R4
rla.b R4

7.5.2 What is the value in position 7 of R4 after the
following instructions have been executed?

mov.b #10000001b, R4
rla.b R4

7.5.3 What is the value of the C-flag after the follow-
ing instructions have been executed?

mov.b #10000001b, R4
rla.b R4

7.5.4 What is the value in position 0 of R4 after
the following instructions have been
executed?

mov.b #10000001b, R4
rra.b R4

7.5.5 What is the value in position 7 of R4 after the
following instructions have been executed?

mov.b #10000001b, R4
rra.b R4

7.5.6 What is the value of the C-flag after the follow-
ing instructions have been executed?

mov.b #10000001b, R4
rra.b R4

7.5.7 What is the value in position 0 of R4 after the
following instructions have been executed (you
can assume C ¼ 0 prior to this code)?

mov.b #10000001b, R4
rlc.b R4

7.5.8 What is the value in position 7 of R4 after the
following instructions have been executed (you
can assume C ¼ 0 prior to this code)?

mov.b #10000001b, R4
rlc.b R4

7.5.9 What is the value of the C-flag after the follow-
ing instructions have been executed (you can
assume C ¼ 0 prior to this code)?

mov.b #10000001b,
rlc.b R4

7.5.10 What is the value in position 0 of R4 after the
following instructions have been executed (you
can assume C ¼ 0 prior to this code)?

mov.b #10000001b, R4
rrc.b R4

7.5.11 What is the value in position 7 of R4 after the
following instructions have been executed (you
can assume C ¼ 0 prior to this code)?

mov.b #10000001b, R4
rrc.b R4

7.5.12 What is the value of the C-flag after the follow-
ing instructions have been executed (you can
assume C ¼ 0 prior to this code)?

mov.b #10000001b, R4
rrc.b R4
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Chapter 8: Program Flow Instructions
This chapter introduces the MSP430 program flow instructions [1]. Program flow instructions alter

the location of the program counter to enable looping or conditional execution of code. Program flow
instructions are what gives a computer program the ability to make decisions about what to do next (i.e.,
what code to execute) based on input conditions or the results of certain operations. Examples of
program flow instructions are provided to help in understanding how they impact the program counter.
Examples are also given on how to implement common programming constructs such as loops and
decision statements. It is intended that the reader is coding the examples using the MSP430FR2355
LaunchPad™ board as they go through this chapter.

Learning Outcomes—After completing this chapter you will be able to:

8.1 Use unconditional jumps and branches to alter the program counter.
8.2 Use conditional jumps to alter the program counter based on the status register flags.
8.3 Implement common programming constructs (while() loops, for() loops, if/else, and switch/

case statements) using conditional and unconditional jumps.
8.4 Use flow charts to describe the functionality of a program.

8.1 Unconditional Jumps and Branches

The program counter holds the address of the next instruction to fetch while executing the current
instruction. When executing a sequence of instructions, the PC is simply incremented such that it points
to the next address in memory that contains the next instruction. MSP430 instructions are either 1�, 2�,
or 3� 16-bit words in size. Upon a fetch, the CPU determines which instruction is being executed and
then knows how many times to increment the PC so that it is pointing to the next instruction in memory.
A jump, or branch, is an instruction that sets the PC to a different value other than the next subsequent
instruction in memory. By altering the PC, the flow of the program is changed. This allows blocks of
instructions to be repeated (i.e., a loop) or blocks of code to be selectivity executed (i.e., if/else).

There are two broad categories of program flow instructions: unconditional and conditional. Uncon-
ditional instructions will alter PC when they are executed. Conditional instructions will only alter the PC
when certain conditions exist on the VNZC flags in SR (e.g., jump only when N ¼ 1).

Address labels are essential to program flow instructions in assembly. As the size of a program
grows, it becomes nearly impossible for a programmer to track the exact address locations to put into the
PC during a jump or branch. As such, programmers leave it to the assembler to track the exact
addresses to use during a jump/branch by using address labels.

The branch (br) instruction is an unconditional program flow instruction that simply moves the value
of the src operand into PC (mov.w #dst, PC). This instruction can point PC to any location within the
16-bit address space of the MSP430FR2355 memory system. A branch almost always uses immediate
mode addressing to specify the address of the label. The branch instruction takes three words of
program memory.

The jump (jmp) instruction is another unconditional program flow instruction that always alters the
PC, but does not use the src operand as an address directly. Instead, the src operand is interpreted as a
signed offset to apply to the PC. During assembly, the offset is calculated by subtracting the current value
of the PC with the address of the label and then forming a 10-bit offset to be used as part of the operand.
This limits the jump to only the�511 to +512 addresses around the current value of the PC; however, the
jmp instruction executes faster because it only takes one word of program memory compared to the
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three words that br takes. As such, the jmp instruction is used more often than br. If the jump offset
calculated during assembly happens to be outside of the �511 to +512 range, the assembler will give a
“jump out of range” error. If this occurs, then a branchmust be used. A jump almost always uses symbolic
mode addressing with an address label of where to jump. Follow Example 8.1 to see how these
unconditional program flow instructions work.

Example 8.1
Using unconditional jump and branch instructions
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CONCEPT CHECK

CC8.1 Can we implement the equivalent functionality of a branch instruction with a mov?

A) Yes. The branch simply puts the value of the address label into PC. This is the
same as mov dst, PC. In fact, the branch is an emulated instruction and is
replaced during assembly with a move instruction.

B) No. While a move might produce the same functionality, we need to use
mnemonics that make more sense to the assembler. The branch mnemonic is
more descriptive, so we need to use it instead of a move.

8.2 Conditional Jumps

Conditional jumps alter the program counter when certain conditions exist in the status flags within
the status register. A conditional jump instruction will alter the program counter if the condition is true,
which jumps the program counter to a new location in the program. If the condition is false, the program
counter will simply move on to the next instruction residing in memory.

8.2.1 Carry-Based Jumps

The jump if carry (jc) instruction will alter the program counter if C¼ 1; otherwise it will simply move
on to the next instruction in memory. The jump if no carry (jnc) instruction will alter the program counter if
C ¼ 0; otherwise it will simply move on to the next instruction in memory. Follow Example 8.2 to see how
these carry-based conditional jump instructions work.
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Example 8.2
Using jumps based on the carry flag (JC, JNC)
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8.2.2 Zero-Based Jumps

The jump if zero (jz) instruction will alter the program counter if Z ¼ 1; otherwise it will simply move
on to the next instruction in memory. The jump if not zero (jnz) instruction will alter the program counter if
Z ¼ 0; otherwise it will simply move on to the next instruction in memory. Follow Example 8.3 to see how
these zero-based conditional jump instructions work.

Example 8.3
Using jumps based on the zero flag (JZ, JNZ)
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8.2.3 Negative-Based Jumps

The jump if negative (jn) instruction will alter the program counter if N ¼ 1; otherwise it will simply
move on to the next instruction in memory. There is no jump if not negative instruction in the MSP430
instruction set; however, this condition can be created using the logic that if the result is not negative, it
must be positive. Follow Example 8.4 to see how this negative-based conditional jump works.

Example 8.4
Using jumps based on the negative flag (JN)
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8.2.4 Overflow-Based Jumps

The jump if greater than or equal (jge) and jump if less than (jl) instructions provide the ability to
jump based on inequalities and also to consider two’s complement overflow. These jumps use both the
N-flag and V-flag and assume the results are signed numbers. The jge instruction will jump when
(N � V ¼ 0). The jl instruction will jump when (N � V ¼ 1); however, both instructions are easier to
understand by simply using their mnemonic description (i.e., � and <). Follow Example 8.5 to see how
these inequality-based conditional jumps work.

Example 8.5
Using jumps based on inequalities (JGE, JL)
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CONCEPT CHECK

CC8.2 Is it possible to create the functionality of an unconditional jump using a conditional jump?

A) Yes. You can simply set or clear one of the flags in the SR and then use a
conditional jump that is guaranteed to always take. For example:

bic.b #00000001b, SR ; clear Carry Flag
jnc ; jump if No Carry

B) No. The conditional jumps are too complicated. They need to be used exactly
like the data sheet says. No messing around.

8.3 Implementing Common Programming Constructs in Assembly

Now that we have covered the majority of the instructions within the MSP430 instruction set, we
have the ability to implement any programming behavior that is possible on a single CPU computer. This
section provides some examples of how common higher-level programming constructs such as while()
loops, for() loops, if/else, and switch/case statements are implemented in assembly.

8.3.1 Implementing While() Loop Functionality

A while() loop is a sequence of statements that will continually execute as long as a Boolean
condition at the beginning of the loop is satisfied. In the C programming language, the Boolean condition
is inserted within the parenthesis of the while() keyword and the statements to be executed are listed
within curly brackets ({}). In assembly, this behavior is implemented with a combination of test, compare,
and conditional jump instructions. Follow Example 8.6 to see how while() loop functionality is
implemented in assembly.
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8.3.2 Implementing For() Loop Functionality

A for() loop is a sequence of statements that will execute a fixed number of times. At the beginning of
the for() loop, the number of times to iterate is specified by stating a loop variable, the starting value of the
variable, the final value of the variable, and the method that the variable will be incremented/
decremented (i.e., increment by 1, decrement by 2, etc.). For() loops are powerful because the loop

Example 8.6
Implementing while() loops in assembly
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variable can be used as an offset when accessing blocks of storage. In assembly, for() loop functionality
is accomplished using increment/decrement, test, compare, and conditional jump instructions. Follow
Example 8.7 to see how for() loop functionality is implemented in assembly.

Example 8.7
Implementing for() loops in assembly
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8.3.3 Implementing If/Else Functionality

An if/else is a decision construct that allows statements to be selectively executed based on the
result of a Boolean condition. In its simplest form, a Boolean condition is entered after the if portion of the
construct. If this condition is true, the statements listed within the subsequent curly brackets will be
executed. If the condition is not true, then the first set of statements are skipped, and the statements
listed within the curly brackets after the else portion of the construct are executed. If/else statements
can be nested to provide the ability to check multiple Boolean conditions. In assembly, if/else functional-
ity is accomplished using compare, unconditional jump, and conditional jump instructions. Follow
Example 8.8 to see how if/else functionality is implemented in assembly.

Example 8.8
Implementing if/else statements in assembly
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8.3.4 Implementing Switch/Case Functionality in Assembly

A switch/case statement (also called either just a switchor just a case statement) allows a variable to
be tested against a list of values. The first value in the list that matches the variable will result in the
execution of statements associated with that value. The functionality is similar to nested if/else
statements; however, the syntax is more amenable to large lists of comparisons. In assembly, a
switch/case statement is implemented with a sequence of compare instructions, each with an associated
conditional jump to a corresponding series of instructions to be executed. Follow Example 8.9 to see how
switch/case statements are implemented in assembly.

Example 8.9
Implementing switch/case statements in assembly
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CONCEPT CHECK

CC8.3 Does a C compiler create assembly code to implement its desired functionality?

A) Yes. All of the functionality in your C program will be converted into a series of
assembly code instructions to implement the desired program behavior.

B) No. Compilers don’t understand assembly. They just deal with C.

8.4 Flow Charts

A flow chart is a graphical depiction of the behavior of a program. Flow charts are useful in the
design stage of a program as they allow the algorithm to be thought through prior to implementation.
There are five basic elements to a flow chart (shown in Fig. 8.1). An oval represents the start and end to a
program. A rectangle represents a process, which can be a single instruction or a sequence of
instructions that accomplishes a specific task. A diamond represents a decision where the corners of
the shape represent different paths the program can take based on the decision. Finally, a subprocess is
a rectangle with double sides that represents a sequence of instructions that occurs separate from the
main program flow. A subprocess can be a subroutine or a service routine.

Let’s look at some flow charts for common programming constructs. Figures 8.2, 8.3, 8.4, and 8.5
show flow charts for a while() loop, for() loop, if/else, and switch/case, respectively.

Fig. 8.1
Main elements of a flow chart
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Fig. 8.3
Flow chart for a for() loop

Fig. 8.4
Flow chart for an if/else statement

Fig. 8.2
Flow chart for a while() loop
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Fig. 8.5
Flow chart for a switch/case statement
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Let’s look at an example of creating an assembly program from a flow chart. Follow Example 8.10 to
gain experience with this process.

Example 8.10
Implementing assembly code from a flow chart
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CONCEPT CHECK

CC8.4 Creating flow charts seems like extra work. Why would I take the time to do one?

A) It really is. You should just code without thinking and hope it works.

B) Good coders don’t need to think. They just type fast.

C) Most coders aren’t good at drawing, so flow charts aren’t helpful anyway.

D) A flow chart allows the developer to think through the algorithm needed to
solve the program before getting into the implementation details of the code.

Summary

v Branches and jumps are instructions that alter
the program counter. This allows a program to
run loops and make decisions about which
instructions to execute and which to skip.

v An unconditional branch (br) and jump (jmp)
will always alter the program counter.

v Branches can point PC to the entire memory
range of the MSP430FR2355.

v Jumps apply a 10-bit offset to the program
counter that is calculated by determining the
difference between the current address of
PC and the address of the label to jump
to. Using a 10-bit offset limits jumps to only
the �511 to +512 addresses around the cur-
rent value of the program counter.

v Conditional jumps alter the PC only when
certain conditions are present on the status
flags in the status register.

v There are conditional jumps based on the
carry flag (jc, jnc), the zero flag (jz, jnz),
and the negative flag (jn).

v There are also conditional jumps that exe-
cute based on equalities that use both the
N- and Z-flags. There is a branch if greater
or equal jump (jge), which executes when
N � V ¼ 1. There is also a branch if less than
(jl), which executes when N � V ¼ 0. The
jge and jl branches assume the operands
are treated as signed numbers.

v Traditional programming constructs such as
while() loops, for() loops, if/else, and switch/
case statements can be implemented using
compare, test, and conditional jump
instructions.

v Flow charts provide a graphical method to
describe the flow of a program. Flow charts
are used during the program design phase to
decide how an algorithm will be
implemented. Once the flow chart is created,
the assembly code can be directly
implemented from the chart.

Exercise Problems

Section 8.1: Unconditional Jumps and
Branches
8.1.1 What is the main difference between an uncon-

ditional branch and an unconditional jump?

8.1.2 When would you encounter an assembly error
titled “jump out of range”?

8.1.3 If you encounter a “jump out of range” error,
what is the resolution?

8.1.4 Why are labels so important to branch and
jump instructions?

8.1.5 What is the range of addresses that a jump can
reach from the current PC value?

Section 8.2: Conditional Jumps
8.2.1 What instruction will perform a conditional jump

when C ¼ 1?

8.2.2 What instruction will perform a conditional jump
when Z ¼ 1?

8.2.3 What instruction will perform a conditional jump
when N ¼ 1?

8.2.4 What instruction will perform a conditional jump
when C ¼ 0?

8.2.5 What instruction will perform a conditional jump
when Z ¼ 0?

8.2.6 What instruction will perform a conditional jump
when N � V ¼ 0?

8.2.7 What instruction will perform a conditional jump
when N � V ¼ 1?

Section 8.3: Implementing Common
Programming Constructs
8.3.1 How does a while() loop function?

8.3.2 How does a for() loop function?

8.3.3 How does an if/else statement function?

8.3.4 How does a switch/case statement function?
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8.3.5 In a while() loop, what are typically the first two
instructions used to check the Boolean condi-
tion for the loop?

8.3.6 In a for() loop, what do the last sequence of
instructions do that control the number of
iterations of the loop?

8.3.7 In an if/else statement, why is it critical to have
an unconditional jump instruction?

8.3.8 In a switch/case statement, how does the num-
ber of compare statements relate to the num-
ber of cases in the decision statement?

Section 8.4: Flow Charts
8.4.1 Which high-level programming construct does

the flow chart in Fig. 8.6 represent?

Fig. 8.6
Flow chart 1

8.4.2 Which high-level programming construct does
the flow chart in Fig. 8.7 represent?

Fig. 8.7
Flow chart 2

8.4.3 Which high-level programming construct does
the flow chart in Fig. 8.8 represent?

Fig. 8.8
Flow chart 3

8.4.4 Which high-level programming construct does
the flow chart in Fig. 8.9 represent?

Fig. 8.9
Flow chart 4
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Chapter 9: Digital I/O
This chapter introduces the digital I/O system for the MSP430 [1–3]. Digital I/O provides a way for an

MCU to directly read or write logic levels to pins on the device package. The digital I/O system is highly
versatile as it can be used to implement nearly any functionality a programmer wishes. We will begin by
looking at the general characteristics of digital I/O on theMSP430 and how they are configured. Then, we
will look at specific examples of writing to and reading from pins on the MCU that are connected to LEDs
and buttons on the MSP430FR2355 LaunchPad™.

Learning Outcomes—After completing this chapter you will be able to:

9.1 Describe the procedure to set up a digital I/O pin on the MSP430.
9.2 Design a program to write logic levels to an output pin on the MCU.
9.3 Design a program to read logic levels from an input pin on the MCU.

9.1 The MSP430 Digital I/O System

The full MSP430 architecture supports up to 12-, 8-bit I/O ports; however, very few MCU devices
have these many I/O ports implemented. We will focus specifically on the MSP430FR2355 MCU so that
so we can look at specific digital I/O coding examples. The MSP430FR2355 contains six I/O ports
labeled P1, P2, P3, P4, P5, and P6. P1-P4 are 8-bit ports. P5 is 5 bits. P6 is 7nbits. This gives 44 total
digital I/O available on the MCU package. Figure 9.1 shows the MSP430FR2355TPT package pinout

Fig. 9.1
Digital I/O breakout on the MSP430FR2355TPT package

# The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. J. LaMeres, Embedded Systems Design using the MSP430FR2355 LaunchPad™,
https://doi.org/10.1007/978-3-031-20888-1_9
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highlighting the digital I/O assignments. Recall that MCUs share functionality on pins in order to reduce
the size and cost of the device.

Each of the digital I/O from the MSP430FR2355TPT MCU is broken out to a variety of external
circuits on the MSP430FR2355 LaunchPad™ board. Figure 9.2 shows the details of the MCU digital I/O
breakout on the LaunchPad™.

The MSP430 provides the ability to access ports using 16-bit operations using the labels PA, PB,
and PC. PA represents the combination of P1:P2. PB represents the combination of P3:P4. PC
represents the combination of P4:P5. In this text, we will always access the ports using 8-bit operations
(.b) as it is much simpler to understand their operation and write programs for.

Each bit within every port is independently configurable with a handful of useful settings. First, each
bit can be configured to either be an input or an output. Additionally, bits that are programmed to be an

Fig. 9.2
Digital I/O breakout on the MSP430FR2355 LaunchPad™ Development Kit
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input can have an optional pull-up or pull-down resistor. Ports 1–4 can also contain edge-triggered
interrupts with selectable edge sensitivity (LOW-to-HIGH or HIGH-to-LOW). Note that interrupts will be
covered in Chap. 11, so we will not go into those details now. The digital I/O system contains a set of
registers for each port that facilitate configuration, reading, and writing. The terminology used within the
data sheets for the MSP430 attempts to generalize the register names so that they apply to all of the
ports. A lower-case “x” is used to denote a number that can take on any value between 1 and 5 and
represents a port number. For example, if the documentation stated “Px can be configured to be both an
input and output,” this means all ports from P1 to P5 can be configured to be both an input and output.
The rationale for this terminology will become clearer as the configuration registers are explored. There
are six key configuration registers for each port within the MSP430FR2355 MCU: PxDIR, PxIN, PxOUT,
PxREN, PxSEL0, and PxSEL1.

9.1.1 Port Direction Registers (PxDIR)

The port direction registers dictate whether the port bits are configured as inputs or outputs. Each bit
can be configured independently. The logic for PxDIR is as follows:

• Bit ¼ 0: Pin is an input (default).

• Bit ¼ 1: Pin is an output.

9.1.2 Port Input Registers (PxIN)

Each bit within the PxIN registers represents the logic levels at the input signal pins. The bits within
this register use positive logic, meaning that a 0 ¼ low and 1 ¼ high. These registers are read-only. In
order to read from an input port bit, a program can either move the information into a CPU register or do
bit compares on the PxIN memory location.

9.1.3 Port Output Registers (PxOUT)

Each bit within the PxOUT registers is the value to be output to the port’s signal pin when the bit is
configured to be an output. In order towrite to an output port bit, a program can move information into the
PxOUT register or perform bit set/clear operations on the PxOUT address location.

When a port bit is configured as an input, the PxOUT register has a secondary role, which is to
dictate the polarity of an optional pull-up/down resistor (see next section).

9.1.4 Port Pull-up or Pull-down Resistor Enable Registers (PxREN)

When a port bit is configured as an input, an optional pull-up or pull-down resistor can be attached to
the input pin. This resistor resides within the MCU, so no external components are needed. Pull-up/pull-
down resistors are useful when the external circuit connected to the MCU input has states that are not
driven to a known logic level. A pull-up/pull-down resistor can produce a known value for these cases.

One common use of pull-up/pull-down resistors is with single-pole, single-throw (SPST) switches.
SPSTswitches are the simplest form of a switch and are very common in embedded systems. An SPST
switch has one input and one output. When the switch is open, the input and output are not connected.
When the switch is closed, the input and output are connected. When using an SPSTswitch, the input is
typically connected to ground to provide a logic low when the switch is closed; however, when the switch
is open the output is not connected to anything so the MCU sees an indeterminant logic level. Adding a
pull-up resistor connected to the power supply can provide a logic high when the switch is open. This
provides two determinate states coming from the switch corresponding to it being open or closed. Pull-up
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and pull-down resistors are typically very large (10kΩ ! 1 MΩ) so that when the switch is closed, the
current that flows from the power supply to the ground through the resistor and switch is minimal.
Figure 9.3 shows some configurations of the SPST switch and the use of a pull-up resistor to avoid
indeterminant states.

Whether or not a port input has a pull-up/pull-down resistor is dictated by the bits within the PxREN
register. The bits within PxREN control the corresponding bit location within PxIN (i.e., bit 0 of PxREN
controls whether bit 0 of PxIN has a pull-up/pull-down resistor). The logic for PxREN is as follows:

• Bit ¼ 0: Pull-up/pull-down resistor disabled (default).

• Bit ¼ 1: Pull-up/pull-down resistor enabled.

When PxREN enables a pull-up/pull-down resistor, the PxOUT register is used to dictate whether
the resistor is a pull-up or pull-down. If PxDIR¼ 0, making the port bit an input, and PxREN¼ 1, enabling
the pull-up/pull-down resistor, then the PxOUT register has the following logic:

• PxOUT ¼ 0: Insert a pull-down resistor.

• PxOUT ¼ 1: Insert a pull-up resistor.

Fig. 9.3
The use of pull-up resistors with SPST switches
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9.1.5 Port Function Select Registers (PxSEL1 and PxSEL0)

All of the above settings are used for all of the functions that may use a particular pin on the MCU
package as shown in Fig. 9.1. We use the Port Function Select (PxSEL) registers to tell the MCU which
function to use, including whether to make the signal pin a digital input/output. The MSP430FR2355 has
more than two functions assigned to most of its pins, so it requires two bits to control the function
selection. There are two registers, PxSEL1 and PxSEL0, that hold the two selection bits. The logic for
these registers is shown in Table 9.1. Note that each signal pin has digital I/O as its default selection (i.e.,
PxSEL1:PxSEL0¼ 00). To see what the secondary and tertiary functions are for each pin, you must look
in the device-specific data sheet for the MCU.

9.1.6 Digital I/O Enabling After Reset

When an MCU is first powered up, or reset by the user, all digital I/O are put into a high-impedance
mode with Schmitt triggers in order to reduce power consumption and avoid any errant current flow. After
configuring the digital I/O using the configuration registers (PxDIR, PxREN, PxOUT if applicable, and
PxSEL1:PxSEL0), the digital I/O must be taken out of low-power inhibit mode. This is accomplished by
clearing the LOCKLPM5 bit in the PM5CTL0 register. This bit is part of the power management module.
At this point in this textbook we do not need to understand the exact details of this system; all we need to
know is that the digital I/O doesn’t work unless this bit is cleared and the system is taken out of low-power
inhibit. The steps to fully set up a digital I/O for use can be summarized in the following steps:

• Initialize configuration registers: PxDIR, PxREN, PxOUT if applicable, and PxSEL1:PxSEL0.

• Clear the LOCKLPM5 bit in the PM5CTL0 register.

• Your program may now start using the PxIN or PxOUT registers.

Programmers will often take advantage of the reset conditions of the configuration registers when
setting up digital I/O. As a case in point, consider setting up a signal pin as a digital input without a pull-up/
pull-down resistor. Upon reset, the default value of PxDIR ¼ 0, which defaults the pin to an input. Upon
reset, the default value of PxREN ¼ 0, which defaults the pin to not have a pull-up/pull-down resistor.
Finally, upon reset the values of PxSEL1/PxSEL0 ¼ 00, which defaults the function select for the pin to
be digital I/O. So, all that a programmer actually needs to do is clear the LOCKLPM5 bit in the PM5CTL0
register to take the digital I/O system out of low-power mode and all pins are configured as inputs without
pull-up/pull-down resistors.

The level of explicit configuration of digital I/O can vary upon coding expectations, typically set by
the programmer’s organization. Some organizations create coding standards that require each configu-
ration bit to be explicitly set or cleared upon startup. This is done regardless of whether the explicit
altering of the configuration bit matches its reset value (i.e., the reset value is 0, but we still do a bit clear
to ensure it is a 0). This can be advantageous for two reasons: first, there is no risk that an oversight in

Table 9.1
Port register select logic (PxSEL1:PxSEL0)
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understanding the default values in the data sheet occurs; second, it makes the program highly readable
by subsequent programmers. This approach can be simultaneously disadvantageous. The explicit
instructions that make sure every bit is configured as desired, regardless of whether the desired value
matches the reset value, can lead to excessive startup times. Additionally, the program code can
become excessively large and use up the program memory.

In this text, an approach is taken that balances the two initialization extremes while emphasizing the
core concepts of the digital I/O system.Wewill always configure the PxDIR register to explicitly show that
we are setting the direction of a bit to be used by the program. We will only configure PxREN if the input
uses a pull-up/pull-down resistor. That way if a resistor is used it is obvious, and if it doesn’t, there is no
mention of PxREN in the program. We will not explicitly configure PxSEL1:PxSEL0 to select digital I/O as
the function for the pin as it is a common assumption that upon reset, all MCU pins default to the digital
I/O function.

9.1.7 Using Literal Definitions from the MSP430.H Header File

Each of the configuration registers just described has a unique memory address within the MSP430
address map. Looking up and keeping track of these exact address values can be time-consuming and
overwhelming. Even something as simple as setting up a single pin to be a digital input with a pull-up
resistor requires the programmer to look up multiple absolute addresses including PxDIR, PxREN, and
PxIN. Not only is this an excessive amount of work, but using absolute addressing makes the program
unusable on other MCUs since other MSP430 variants may have slightly different memory maps.

To eliminate the need for the programmer to look up the absolute address of each register within the
memory map, Code Composer Studio automatically includes a header file with literal names defined for
thememory addresses. This header file also contains useful literals for specific bitmasks (i.e., BIT0¼ 01 h
and Z ¼ 02 h). When creating a new project in CCS for the MSP430FR2355, a header file named
msp430.h is included. This generic header file points to a device-specific header file dictated by the
MCU settings entered when creating the CCS project. In the case of the MSP430FR2355 MCU we are
discussing in this book, the device header file that will ultimately be used is named “msp430fr2355.h.” In
CCS, this file can be found by expanding the “Includes” folder within the CCS project. It is important to
know where this file is because it contains the exact spelling of the register names and abbreviations for
the memory map of the MSP430FR2355 MCU we are using. In subsequent sections, names from this
header file will be used in the programming examples.

CONCEPT CHECK

CC9.1 Why is it a good idea for the digital I/O system to be disabled and in low-power mode
upon startup?

A) It isn’t. All it does is cause the programmer to spend time figuring out how to
turn it on. I would prefer if by default all the pins were configured as outputs and
just worked.

B) Since the MCU can be used in any type of application, we never know what is
going to be physically connected to the pins of the package. Disabling the
digital I/O system upon startup avoids accidentally damaging external circuitry
by inadvertently driving a logic level into it.

C) It makes it difficult to program so the developers are forced to take an
embedded systems class.

D) The entire MCU is disabled upon startup, which includes the digital I/O.
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9.2 Digital Output Programming

Let’s now look at writing a program that will configure a pin as a digital output on the
MSP430FR2355. There are two user LEDs provided on the LaunchPad™ board labeled LED1 and
LED2. LED1 is connected to bit 0 of port 1 and LED2 is connected to bit 6 of port 6. The shorthand for
these I/O locations is P1.0 and P6.6. Let’s look at how to drive LED1. Following the steps outlined in the
prior section, configuring this port as an output requires the following steps:

• Initialize configuration registers:

-P1DIR bit 0 ¼ 1; Configure P1.0 as an OUTPUT
Note: For an output, this is all we need to do (relying on PxSEL1:PxSEL0 ¼ 00).

• Clear LOCKLPM5 in PM5CTL0 register.

If we open the msp430fr2355.h header file, we can see that there are literals defined for the P1DIR
and PM5CTL0 register addresses. We can also see that there is a bit mask defined for BIT0 (0x0001)
and LOCKLPM5 (0x0001). Using the names defined in the header file, the assembly code to accomplish
this configuration is:

bis.b #BIT0, P1DIR; Set P1.0 as an output. P1.0 = LED1
bic.b #LOCKLPM5, PM5CTL0; Disable Digital I/O low-power default

After these two lines of code, the output is now ready to be used. From the msp430fr2355.h header
file, we can see that the register name for the port outputs is P1OUT. This name can be used when
writing to the port. Since literal names from the header file will be directly substituted into the main.asm as
their numeric values, we need to use an & in front of the names to treat the numbers as absolute
addresses. Follow Example 9.1 to see the actual code to turn on and off LED1 on the LaunchPad™
board. Note that upon reset, P1OUT is indeterminant. That means that the first time through the main
loop, LED1 may be in either the ON or OFF states.

9.2 Digital Output Programming • 237



The CCS debugger allows the port registers to be viewed during debug. This is a useful tool when
configuring a digital I/O pin for the first time. Often when a digital I/O is not configured correctly, the result
is that the I/O pin simply does not work. When this occurs, the only way to figure out what is going on is to
go into the Register Viewer and make sure the configuration registers are set up as desired. Follow
Example 9.2 to experiment with the configuration registers in the Register Viewer.

Example 9.1
Using a digital output to drive LED1 on the LaunchPad™ board
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CONCEPT CHECK

CC9.2 Is it possible to experiment with different port configuration settings by manually typing in
values into the Register Viewer?

A) Yes. Any register that shows up in the Register Viewer in the CCS debugger
can bemanually altered by typing in values directly in their fields. You just need
to remember to hit return after you enter the value for it to take effect.

B) No. That is just unnatural. Registers should only be configured by the program,
not the debugger.

Example 9.2
Viewing port registers in the CCS Register Viewer
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9.3 Digital Input Programming

Let’s look at writing a program that will configure a pin as a digital input on the MSP430FR2355.
There are two push-button switches provided on the LaunchPad™ board labeled S1 and S2. S1 is
connected to P4.1 and S2 is connected to P2.3. Both push-button switches are SPST with their inputs
connected to ground. This provides a logic LOW to the MCU when not pressed. This means if we want to
use these switches, we need to include pull-up resistors on the MCU in order to provide a known state
when not pressed. Figure 9.4 shows the SPST push-button switch circuitry for S1 on the LaunchPad™
board indicating how the pull-up resistor should be configured.

Let’s specifically look at reading a logic level from S1. One of the simplest ways to read from an input
pin is through a process called polling. Polling consists of creating a program loop that will continually
check the value of the input and only exit the loop if the value changes. Applying the concept of polling to
reading S1, we can create a program loop that will continually check the switch to see if it has been
pressed. Based on the circuit diagrams in Fig. 9.4, we should stay in the loop as long as the value of
S1 ¼ 1, meaning that the switch has not been pressed. If S1 ever equals 0, then that indicates that the
switch has been pressed and we can exit the loop and perform some actions using other instructions.
After the action is taken, the program reenters the polling loop to wait for the next press. Let’s create a
program that will poll S1 and if it is pressed, toggle LED1. The flow chart for this program is shown in
Fig. 9.5.

Fig. 9.4
Push-button switch circuitry on the LaunchPad™ board

Fig. 9.5
Flow chart for polling SW1
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Follow Example 9.3 to create a program to implement the S1 polling logic.

When running the program from Example 9.3 you probably noticed that pressing S1 did not always
result in LED1 toggling. Youmay have also noticed that when you held down S1, LED1 appeared dimmer
than when it was on and S1 was not pressed. These issues have to do with the timing of the polling loop.
The polling loop is testing the S1 bit many millions of times per second. This means no matter how fast

Example 9.3
Polling the input S1
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you press and release S1, the program will exit the polling loop and toggle LED1 thousands of times. The
reason that LED1 is not always toggled when you press and release S1 is because you can never tell
what value LED1 is at when you release the button. The reason that LED1 appears dimmer when you
hold down S1 is because it is being continually turning LED1 on and off millions of times each second
while the program checks S1, exits the polling loop, and performs the XOR toggle operation. One
common technique to address the issues encountered when applying polling to the relatively slow
human interaction with the MCU is to insert a delay loop after the event of interest occurs. In our case
the event of interest is the human finger pressing S1. The delay will give time for the human to remove
their finger from S1 before reentering the polling loop. The amount of delay depends on how responsive
you want the button to be. Consider the new logic for polling S1 in Fig. 9.6 that inserts some delay after
the LED1 toggling action.

Now follow Example 9.4 to see the impact of adding delay after the polling loop.

Fig. 9.6
Flow chart for polling SW1 with delay
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Example 9.4
Polling the input S1 with delay
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CONCEPT CHECK

CC9.3 What is a downside of making the delay after a polling loop too long?

A) There isn’t any downside. The more the better, always.

B) The button will appear unresponsive because it will be in the delay loop much
of the time and not polling the input.

C) You will use up all your data memory with the delay loop.

D) The program might not fit in program memory with the additional delay
instructions.

Summary

v Digital I/O gives an MCU the ability to read
and write logic levels to the pins of a device.
This system is highly versatile because it can
be used for nearly any application.

v MCUs share functionality on their pins to
save space on the package. Digital I/O is
typically the first option on each pin.

v The MSP430FR2355TPT has six digital I/O
ports named P1 (8-bit), P2 (8-bit), P3 (8-bit),
P4 (8-bit), P5 (5-bit), and P6 (7-bit). All 44 I/O
are brought out to pins on the MCU package.

v 16-bit access to the ports can be accom-
plished using the labels PA (P1:P2), PB
(P3:P4), and PC (P5:P6).

v All 44 I/O of MSP430FR2355 MCU are
brought out to pins, LEDs, connectors, or
sensors on the LaunchPad™ board.

v There are six registers for each port in the
MSP430 that configure the port operation.
They are PxDIR, PxIN, PxOUT, PxREN,
PxSEL1, and PxSEL0.

v PxDIR configures each bit within a port to
either an input or output. The logic for
PxDIR is: 0 ¼ input (default); 1 ¼ output.

v PxIN contains the logic values for each pin of
a port configured as an input.

v PxOUTcan be written in order to set the logic
values for any signals configured as outputs.
PxOUT has a secondary role when a port bit
is configured as an input and uses a pull-up/
pull-down resistor. In this case, PxOUT
controls the polarity of the resistor.

v PxREN is used to control whether an optional
pull-up/pull-down resistor is added to pins
configured as inputs. The logic is: 0 ¼ no
resistor (default); 1 ¼ resistor enabled.
When the resistor is enabled, the PxOUT

register dictates whether it is a pull-up or
pull-down using the logic: 0 ¼ pull-down;
1 ¼ pull-up.

v PxSEL1 and PxSEL0 select the function to
be used on each pin. The default value for
PxSEL1:PxSEL0 ¼ 00, which selects the
digital I/O function. The secondary and ter-
tiary functions for each pin are listed in the
MSP430FR2355 device-specific data sheet.

v Upon power-up or reset, the digital I/O sys-
tem puts all pins of the digital I/O system into
a high-impedance input mode with Schmitt
triggers in order to reduce power consump-
tion and avoid errant current flow. To take the
digital I/O system out of this low-power mode,
the programmer needs to clear the
LOCKLPM5 bit in the PM5CTL0 register.

v The procedure to initialize the ports is to first
configure the PxDIR, PxREN, PxOUT
(if using a pull-up/pull-down resistor), and
PxSEL1:PxSEL0 registers. Next, the
LOCKLPM5 bit in the PM5CTL0 register is
cleared to take the digital I/O system out of
low-power mode. After this, the PxIN or
PxOUT registers are ready for use by the
main program.

v Programmers can take advantage of the
default settings of some configuration
registers upon startup; however, explicitly
configuring some bits makes your code
more readable. It is common to explicitly con-
figure PxDIR so it is obvious how the pin is
being used. It is also common to accept the
default values for PxSEL1:PxSEL0 ¼ 00,
which selects digital I/O as the pin function.

v Each new main.asm file created by CCS
includes a msp430.h header file. This header
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file points to a device-specific header file, in
our case the msp430fr2355.h. The device-
specific header file contains literal names
for each configuration register in the memory
map plus some common bit masks. Using
the literal definitions from the header files
makes a program easier to understand and
also potentially portable to another
MSP430 MCU.

v The LaunchPad™ board contains two user
LEDs labeled LED1 and LED2. These are
connected to P1.0 and P6.6 of the MCU,
respectively. These LEDs can be driven
directly as digital outputs to turn them on
and off (0 ¼ OFF, 1 ¼ ON).

v The LaunchPad™ board contains two push-
button switches labeled S1 and S2. These
are connected to P4.1 and P2.3 of the MCU,
respectively. These switches are SPST with
their inputs connected to ground. This
provides a logic LOW when pressed. A pull-
up resistor is required to be enabled on the
MCU pin in order to provide a logic HIGH
when the switch is not pressed.

v Polling is the process of continually checking
the value of an input. This is accomplished by
creating a program loop that will continually
check the value of the pin. The program will
stay in the polling loop as long as no event
has occurred (i.e., the switch has not been
pressed). When an event occurs (i.e., the
switch has been pressed), the program
exits the polling loop and performs some
task. It then reenters the polling loop to wait
for the next event.

v When polling a human interaction such as a
button press, the mismatch in speed
between the MCU bit checking and the
human motion can create glitchy behavior.
This is because the MCU can poll the input
millions of times per second. Even the fastest
human button press can be observed by the
polling loop as thousands of presses.

v To avoid the glitchy behavior, a delay loop
can be inserted after the program exits the
polling loop to give time for the human to
remove their finger from the button.

Exercise Problems

Section 9.1: The Digital I/O System
9.1.1 What does the PxDIR register configure?

9.1.2 What is the logic for the PxDIR register?

9.1.3 What is the function of the PxIN register?

9.1.4 What is the primary function of the PxOUT
register?

9.1.5 What is the secondary function of the PxOUT
register?

9.1.6 What does the PxREN register configure?

9.1.7 What is the logic for the PxREN register?

9.1.8 What do the PxSEL1:PxSEL0 registers
configure?

9.1.9 What function will be selected for an MCU pin if
PxSEL1:PxSEL0 ¼ 00?

9.1.10 What is the default value for PxSEL1:PxSEL0
after power-on or reset?

9.1.11 What does the msp430.h header file provide
for the programmer?

9.1.12 Why is it a good idea to use the literals from the
msp430.h header file?

Section 9.1: Digital Output Programming
9.2.1 If you rely on the function select registers’

default value choosing digital I/O as a pin func-
tion (PxSEL1:PxSEL0 ¼ 00), what are the only
two configuration steps that are needed to ini-
tialize a pin to be an output?

9.2.2 Give the assembly program code to configure
P1.4 as an output. Use the literal definitions
from the msp430.h header file for the register
names and bit masks.

9.2.3 Give the assembly program code to configure
P2.0 as an output. Use the literal definitions
from the msp430.h header file for the register
names and bit masks.

9.2.4 Give the assembly program code to configure
P3.7 as an output. Use the literal definitions
from the msp430.h header file for the register
names and bit masks.

9.2.5 Give the assembly program code to configure
P4.5 as an output. Use the literal definitions
from the msp430.h header file for the register
names and bit masks.

9.2.6 Give the assembly program code to drive a
logic LOW to P1.4. Use the literal definitions
from the msp430.h header file for the register
names and bit masks.

9.2.7 Give the assembly program code to drive a
logic LOW to P2.0. Use the literal definitions
from the msp430.h header file for the register
names and bit masks.

9.2.8 Give the assembly program code to drive a
logic HIGH to P3.7. Use the literal definitions
from the msp430.h header file for the register
names and bit masks.
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9.2.9 Give the assembly program code to drive a
logic HIGH to P4.5. Use the literal definitions
from the msp430.h header file for the register
names and bit masks.

Section 9.3: Digital Input Programming
9.3.1 If an SPST switch is connected to an MCU pin

and has its input tied to GND, does the MCU
need to enable a pull-up or pull-down resistor?
Why or why not?

9.3.2 If an SPST switch is connected to an MCU pin
and has its input tied to the power supply, does
the MCU need to enable a pull-up or pull-down
resistor? Why or why not?

9.3.3 What is the concept of polling?

9.3.4 Why does delay help with polling when reading
an input with human interaction?

9.3.5 What is the downside of putting too large of a
delay after the polling loop is exited?
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Chapter 10: The Stack
and Subroutines

This chapter introduces the concept of a stack as a means to dynamically store information in data
memory [1]. It then looks into the details of how the stack is implemented on the MSP430. The subroutine
is then introduced with details on how the stack is used to store the return address of the routine upon
subroutine exit.

Learning Outcomes—After completing this chapter you will be able to:

10.1 Use the stack on the MSP430 to dynamically access data memory.
10.2 Use subroutines on the MSP430.

10.1 The Stack

The stack is a system that allows us to dynamically allocate data memory. The term dynamically
means that we can access memory without initializing it or reserving it using assembler directives such
as .short and .space. A stack is a last-in, first-out (LIFO) storage structure. One common analogy for how
a stack operates is to imagine plates held in a spring-loaded dispenser found in a cafeteria. Let’s assume
that we are going to load clean plates into the dispenser one by one. We place the first plate into the
dispenser. Next, we place the second plate on top of the first plate. Next, we place the third plate on top of
the second plate, and so on. At any given time, the plate on top is the last plate that was placed into the
dispenser. When you are ready to grab a plate, you take the top plate. The top plate was the last one
placed into the dispenser, but the first one taken out (i.e., a LIFO). The next person in line then grabs the
next available plate, which was the second to last plate placed in the dispenser, and so on. Figure 10.1
shows a graphical depiction of the stack LIFO concept.

Fig. 10.1
The last-in, first-out (LIFO) stack concept

# The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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There are a few traits of the plate dispenser analogy that highlight the operation of a stack in a
computer. First, the order of the plates is inherently kept by the stack. As long as you count how many
plates you have placed onto the stack and howmany have been taken out, you know exactly which plate
is on top. Second, the stack of plates can be replenished at any time. We don’t need to wait until we run
out of plates to put more plates on it. Third, the number of plates that we can put on the stack is
deterministic. The dispenser will only hold so many plates before it is full.

Now let’s compare these traits to the operation of a stack in a computer in which the stack is
implemented as a way to access data memory. First, we need to keep track of the address of where we
are putting information onto the stack. This is done using a dedicated register (SP) that is incremented
and decremented to track where we are in the stack structure. Second, we can store information on the
stack structure in memory at any time since we know the location of where the last information resides,
so we don’t need to worry about overriding existing information. We simply move to the next location in
memory above the last data stored and place the new information. And finally, since the amount of data
memory is finite in a computer, we also know that we cannot put an infinite amount of information onto the
stack in memory. If we put too much information on the stack, it can override other information in memory
and even move into addresses that aren’t in data memory. This is called stack overflow.

Now let’s examine the details of how a stack is implemented in data memory on the MSP430. When
information is stored on the stack, it is called a push operation. When information is retrieved off of the
stack, it is called a pop operation. The stack starts at the end of the data memory range and works its way
backward through the memory range as information is pushed. In the MSP430FR2355, the primary 4kb
data memory block is located at addresses 2000h ! 2FFFh. This means the first 16-bit word of
information pushed will be stored at address 2FFEh. The stack resides at the end of data memory to
allow the maximum potential size of the stack and also avoids overriding reserved locations in memory
that are placed at the beginning address of data memory (i.e., 2000h); however, if too many pushes
occur, it is possible to overwrite variables that were allocated at the beginning of data memory (i.e., stack
overflow).

A stack pointer (SP) register is used to provide the address when accessing the stack. On the
MSP430, the stack pointer is a CPU register that can be referred to in a program as SP or R1. The SP
must be initialized by the user and the SP is always aligned to even addresses. Setting up the starting
address of the stack is one of the operations that is automatically done for us when we create a new
project in CCS. This is accomplished using a move instruction and a global constant called
__STACK_END. Upon startup, the SP is initialized to address 3000h, which in the MSP430FR2355 is
the address immediately after the 4k data memory range. The first push is then stored to 2FFEh. The
second push is to address 2FFCh.

The SP operates using a pre-decrement, post-increment scheme. This means that when a push is
performed, the SP is decremented by 2 and then the 16-bit word is stored to the address pointed to by
SP. When a pop is performed, the 16-bit word is retrieved from the address that SP is pointing to, and
then SP is incremented by 2. Figure 10.2 shows a graphical depiction of the stack memory space and
how pushes and pops work.
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Fig. 10.2
Stack implementation in the MSP430 memory system
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Follow Example 10.1 to experiment with the operation of the stack on the MSP430FR2355.

Example 10.1
Using the stack on the MSP430FR2355
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CONCEPT CHECK

CC10.1 In theory, if no variables were initialized or reserved at the beginning of data memory, how
many bytes can be pushed onto the stack before stack overflow occurs on the MSP430FR2355?

A) 4k. We can push values into the entire primary data memory block.

B) 64k. We can push as much as we want, regardless of whether it is data
memory or not. It is our program.

C) 16 words. The stack is implemented as CPU registers, so we only have
16 words.

D) 32k. I prefer to use the program memory for the stack. That way I have more
storage than when using data memory. I do realize that I can’t write to
program memory, but that doesn’t stop me from dreaming.

10.2 Subroutines

A subroutine is a piece of code that will be used repeatedly in a program. A subroutine typically
accomplishes a very specific task. While the code to accomplish this task could certainly be placed in the
main program anytime it was needed, it would be inefficient to copy and paste the same code segment
many times throughout the main program. In addition, this would lead to increased program size and less
readability by subsequent programmers. In the subroutine approach, the code to accomplish the task is
implemented only once outside of the main program loop. Whenever it is needed, it can be executed by
jumping to it. Other common names for subroutines used in programming are procedures, functions,
routines, methods, or subprograms. While all of these other names may have slightly different features,
they are all essentially the same as a subroutine in that they are designed to accomplish a specific task
that is implemented outside of the main program loop and then called when needed. Once the subroutine
completes, a return jump is used to move the PC back to the next location in the main program loop to
continue operation.

A subroutine starts with an address label to mark its location in memory. Additional steps must be
taken when jumping to a subroutine because while the starting address of the subroutine is always the
same, the return address in the main program will vary depending on where in the main program it is
called. In order to track the dynamic return address when calling a subroutine, the stack is used. The
MSP430 provides an instruction named call that is used to jump to the subroutine address label. This
instruction handles storing the return address on the stack prior to jumping to the subroutine starting
address. An additional instruction named ret (for return) is used at the end of the subroutine that pops the
return address off of the stack and places it into PC to return to the main program. The return address is
calculated by the call instruction so that the address returned to is the next instruction in program
memory after the call.

Variables can be passed to subroutines using three different approaches. The first is using CPU
registers. The second is using the stack. The third is using dedicated variables in data memory.
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Let’s take a look at a programming example using a subroutine on the MSP430. Follow
Example 10.2 to observe the computer operation during subroutine usage.

Example 10.2
Using subroutines on the MSP430FR2355
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CONCEPT CHECK

CC10.2 If during assembly the assembler goes through and replaces all address labels with their
absolute values, wouldn’t it be more efficient for the assembler to just calculate the absolute
return address for each subroutine call instead of using the stack?

A) Yes. That way we could use unconditional jumps instead of messing with the
stack and ret.

B) No. Then the subroutine would need to keep track of all of the locations where
it was called from in the main program and look up their absolute return
address for the return. This additional lookup code would be much more
complicated than using the stack.

Summary

v A stack is a last-in, first-out (LIFO) storage
structure. This is used for dynamic memory
allocation.

v Putting information on the stack is called a
push. A push always puts information on the
top of the stack. The MSP430 contains an
instruction called push.

v Retrieving information from the stack is
called a pop. A pop always gets information
from the top of the stack. The MSP430
contains an instruction called pop.

v The MSP430 implements a stack at the bot-
tom of its data memory range.

v The SP register in the CPU tracks the
address of where information is pushed and
popped from the stack. The SP is always
aligned to even addresses.

v On the MSP430FR2355, SP is initialized by
the user to 3000h, which is the address
immediately after the last location in data
memory.

v The SP works backwards through the data
memory range in order to give the maximum
storage size and avoid overwriting explicitly
defined variables that occur at the beginning
of data memory.

v If the stack grows too large due to a large
number of pushes, it can overwrite variables
at the beginning of data memory and even
move into memory outside of the data mem-
ory. This is called stack overflow.

v The SP operates in a pre-decrement, post-
increment scheme. When a push is
performed, the address that SP is pointing

to is decremented by 2 and then information
is stored to the new SP address. When a pop
is performed, information is read from the
address pointed to by SP and then SP is
incremented by 2.

v A subroutine is a sequence of instructions
that will be used many times during a pro-
gram, so instead of inserting it multiple times
in the main program loop, it is inserted out-
side of the main loop once and jumped to
multiple times.

v A subroutine uses an address label to indi-
cate its starting location in program memory.
This address label is used when the program
is called and is the same regardless of where
in the main program it is called.

v Since a subroutine can be called from any
location in the main program, the return
address from the subroutine is dynamic.
The stack is used to store the dynamic return
address when a subroutine is called.

v The call instruction is used to call a subrou-
tine. It will calculate the return address, which
is the location of the next instruction in the
main program, and push it onto the stack. It
will then move PC to the starting address of
the subroutine.

v The ret instruction is used to return from a
subroutine. It will pop the return address from
the stack and place it in PC so that the pro-
gram will return to the next instruction in the
main program after the call.
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Exercise Problems

Section 10.1: The Stack
10.1.1 Where is information always stored to on the

stack (i.e., top or bottom)?

10.1.2 Where is information always retrieved from on
the stack (i.e., top or bottom)?

10.1.3 What is the instruction called that stores infor-
mation to the stack?

10.1.4 What is the instruction called that retrieves
information from the stack?

10.1.5 What does LIFO stand for?

10.1.6 Why does the stack start at the bottom of data
memory?

10.1.7 What address should the user initialize the
stack to upon startup on the MSP430FR2355?

10.1.8 Is SP always aligned to even or odd
addresses?

10.1.9 When information is pushed to the stack, is the
SP decremented before or after the store?

10.1.10 When information is popped from the stack, is
the SP incremented before or after the
retrieve?

10.1.11 What is stack overflow?

10.1.12 When a new CCS project is created, it auto-
matically initializes SP. What is the name of the
global label that it uses to load into SP?

Section 10.2: Subroutines
10.2.1 What is a subroutine?

10.2.2 Why use a subroutine instead of just inserting
the code for the task in the main program loop
any time it is needed?

10.2.3 Is the starting address of a subroutine always
constant? Why or why not?

10.2.4 Is the return address for a subroutine always
constant? Why or why not?

10.2.5 What does the call instruction do?

10.2.6 What does the ret instruction do?

10.2.7 What are the ways that variables can be
passed to subroutines?

10.2.8 If nothing is on the stack on the
MSP430FR2355 and a subroutine is called,
at what location is the return address placed?
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Chapter 11: Introduction to Interrupts
This chapter introduces the concept of an interrupt (IRQ) as a way to efficiently deal with asynchro-

nous external events that the CPU must handle [1–3]. The details of the MSP430 interrupt system are
then presented and an example of using the port interrupts on the LaunchPadTM board is examined.

Learning Outcomes—After completing this chapter, you will be able to:

11.1 Describe MCU operation during an interrupt.
11.2 Design a program to use the port interrupts on the MSP430FR2355.

11.1 The Concept of an Interrupt

In Chap. 9, we looked at the concept of polling to read from an external pin on the MCU. The idea of
polling highlighted a variety of inefficiencies that necessitate a different approach to interfacing with
systems outside of the CPU. The first issue is that external systems are asynchronous to the CPU clock.
This means that the CPU never knows when these events are going to occur. Additionally, the external
events are often much slower than the speed of the CPU. In the example of polling the push-button input,
the MCU spent the vast majority of its time doing nothing but actively checking the input and rarely was
executing instructions to react to a push-button press. The idea of polling was highly inefficient because
the CPU spent so much of its time executing instructions that did nothing but actively check for an
infrequent event. Additionally, when an event did occur, the polling loop would continuously see the input
as asserted since it only looks at the logic level of the signal and the slow external event would keep the
input asserted for many clock cycles. This required inserting a delay in the program to allow time for the
slower external signal to be de-asserted. A more efficient approach to handling this type of external input
is to only react one time when a transition is observed on the input pin; however, polling does not give us
that ability.

11.1.1 Interrupt Flags (IFG)

An interrupt is an approach to dealing with external, asynchronous events by building hardware into
the MCU that handles identifying and prioritizing events to be serviced by the CPU. The interrupt system
uses the concept of a flag to notify the CPU that an external event on a peripheral has occurred and
action is requested. This approach allows the CPU to continue its normal instruction execution and only
act when a flag is seen. In this way, the CPU does not have to explicitly poll each external peripheral to
see if it needs servicing. Instead, the CPU can execute its main program, and then when a flag is
observed, it can act once it comes to a natural stopping point in the main program.

When a flag is observed, the CPU completes its current instruction and then executes a sequence of
instructions (written by the programmers) that accomplishes the desired action for the peripheral. The
term interrupt stems from the fact that the CPU takes a break from executing the main program and
instead executes instructions specifically for the peripheral event. While an interrupt does momentarily
halt the execution of the main program, it is highly efficient because the CPU does not have to spend
execution cycles polling each external system. The code that is executed when an interrupt occurs is
called an interrupt service routine (ISR) or interrupt handler. When the CPU is in the act of handling the
interrupt, it is called serving the interrupt. When an interrupt has asserted its flag but the CPU has not had
an opportunity to service it, the interrupt is said to be pending. Figure 11.1 shows a modified state
diagram of the CPU fetch ! decode ! execute cycle with a new path that handles taking care of an
interrupt event.
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Once a CPU is architected to support interrupts, then the entire approach to MCU software
development changes. Since MCUs are typically used in applications that respond to inputs from
humans and/or sensors which produce events that are slow and infrequent, interrupts become the
primary method to implement functionality in the software. Many times, an MCU main program loop
will just consist of a main loop with no instructions or a main loop that does nothing but put the MCU into
low power mode. This changes the main program loop into more of a background process, and the
interrupt service routines are considered the foreground processes.

Another approach to MCU software development is to produce routines that are scheduled. MCU
timers can be used to trigger interrupts on a periodic basis that cause the MCU to act at fixed intervals.
This leads to the concept of a real-time operating system, which is simply a set of scheduled routines that
are at fixed intervals and have determinant execution times.

Fig. 11.1
Interrupting the fetch-decode-execute cycle in the CPU
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11.1.2 Interrupt Priority and Enabling

Interrupts have a priority system that ranks each external peripheral from highest to lowest. This
provides a means to handle multiple interrupts that occur at the same time and are simultaneously
requesting service from the CPU. When the CPU is ready to service an interrupt, it always executes the
highest priority peripheral. Once that routine completes, it moves to the next highest priority peripheral
that is pending and so forth. Interrupts can interrupt other interrupts if they have a higher priority, but
some restrictions apply that are described in subsequent sections.

An MCU has three categories of interrupts: (1) system resets; (2) non-maskable interrupts (NMIs);
and (3) maskable interrupts. System resets are the highest priority interrupts and are always enabled.
System resets are the most critical because they cause the MCU to start its operation from the beginning.
This includes putting all configuration registers at their default values, initializing the program counter
and entering the main program at its first instruction. An MCU typically has a variety of system resets
including power-on reset (POR), a power-up reset (PUR), an external reset, and a power supply monitor
violation. System resets do not have developer written ISRs that are executed; instead, the MCU
performs a set of predetermined operations to prepare the CPU for first use. The only action needed
by the developer for system resets is to tell the interrupt system where the starting address of the main
program is (typically the first address of program memory).

Non-maskable interrupts are the second highest priority interrupts and typically handle fault
conditions on the MCU. Examples of non-maskable interrupts are memory access errors and oscillator
faults. Non-maskable interrupts are always enabled but are different from system resets in that they do
execute developer written ISRs instead of a set of predetermined actions.

Maskable interrupts are the third category of interrupts and are the interrupts that handle all of the
common peripherals on an MCU (i.e., ports, timers, serial communication, ADC, and DACs). Maskable
interrupts have both global and local interrupt enables. The GIE bit in the status register is used as the
global enable for all maskable interrupts. When it is set (GIE ¼ 1), then maskable interrupts are allowed.
Upon reset GIE ¼ 0, meaning no maskable interrupts are enabled. The MSP430 provides two
instructions to explicitly enable (eint) and disable (dint) maskable interrupts. These instructions
simply set or clear the GIE bit in the SR accordingly. Each peripheral system then has a local interrupt
enable (IE) that is configured in the control/status registers within the memory map. The global and local
interrupt enable bits can be thought of as gating switches that allow the peripheral’s flag to be observed
by the CPU when configured. Figure 11.2 shows a conceptual model for the global and local interrupt
enables.
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11.1.3 Interrupt Vectors

The beginning of an ISR is marked with an address label in the main.asm file. This address label
serves as the starting address to be put into the PC when the ISR is called. The way that the CPU
retrieves the starting address of the ISR to put into the program counter uses the concept of an interrupt
vector. Each peripheral system that is capable of generating an interrupt is assigned a dedicated address
location at the end of the program memory space. The address is called the peripheral’s interrupt vector
address and will hold the starting address of the ISR. Since there are numerous peripherals that
each require a unique vector, the addresses consume a block of memory called the interrupt vector
table. The starting address of the ISR is put into the interrupt vector table when the program is
downloaded. The developer is responsible for putting the ISR starting address into the correct vector
location using assembler directives. Figure 11.3 shows a graphical depiction of the interrupt vector table
concept.

Fig. 11.2
Conceptual model for global and local interrupt enables
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The full MSP430 architecture supports up to 64 separate interrupt vectors whose addresses are
located within the range FF80h ! FFFFh; however, very few MCUs use all of these vectors due to the
varying amounts of peripherals implemented on the specific devices. That means the developer
needs to determine which peripherals are assigned to which vector locations using the device-specific
data sheet. Only peripherals that are going to be used need to be enabled and have their vectors
initialized.

Figure 11.4 shows a graphical depiction of how the interrupt vector table is initialized using the
starting addresses of ISRs and assembler directives. In this figure, three interrupt vectors are initialized:
reset, vector 22, and vector 25. Vectors 22 and 25 represent maskable interrupts that have ISRs that are
executed when serviced. The starting addresses of these routines (named ISR1 and ISR2) are placed
into their respective vector locations using the assembler directives .section and .short. The literals
that represent the absolute vector address (i.e., .reset, .int22, and .int25) come from the linker file. In this
figure, vector 63 handles the highest priority interrupt in the MCU, which is reset. This vector holds the
starting address of where to begin executing code when the MCU is reset or powered up. This vector
holds the first address of program memory (8000h) where the main program is downloaded to.

Fig. 11.3
Interrupt vector table concept
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11.1.4 Operation of the Stack during an IRQ

When an interrupt is serviced, the CPU needs a way to save the current status of the main program
so that it can resume operation after the ISR completes. The stack is used to accomplish this. When an
IRQ is to be serviced, the CPU finishes its current instruction. This puts the program counter at the
address of the next instruction in the main program to execute. At that point, the PC and SR are pushed
onto the stack. The MCU then proceeds to clear the SR, so that it can be used by the ISR. The MCU then
retrieves the starting address of the ISR from the interrupt’s vector address and loads it into PC. This now
puts the CPU in a position where it can execute the instructions in the ISR. Once the ISR completes, the
CPU pops the SR and PC from the stack. This then moves the program operation back to the original
place in the main program where it left off. Figure 11.5 shows a graphical depiction of the operation of a
stack during an interrupt.

Fig. 11.4
A graphical depiction of initializing the interrupt vector table
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11.1.5 Interrupt Service Routines (ISR)

An interrupt service routine is written in a similar manner as a subroutine. They both need to start
with an address label and contain instructions to be executed when called; however, an ISR must end
with a dedicated instruction called return from interrupt (reti). The reti instruction will pop the SR and
PC off of the stack in order to return the CPU execution back to the main program. While the MCU
automatically pushes PC and SR onto the stack when an interrupt is to be serviced, it is the job of the
developer to explicitly pop the SR and PC off of the stack at the end of the ISR using the reti instruction.

Another critical role of a maskable ISR is that it must clear the peripheral’s local interrupt flag (IFG)
that caused the interrupt in the first place. If the IFG is not cleared, then as soon as the ISR completes
and the CPU returns to the main program, it will be immediately interrupted again because the flag is still
asserted. This leads to an infinite ISR loop that the CPU can never get out of.

ISRs should be short, fast, and dedicated to only performing the functionality needed by the
peripheral at that time. A good ISR should impact the rest of the MCU as little as possible. One common
programming approach to minimizing the impact of an ISR on the main program is to push the general-
purpose CPU registers to the stack as its first act and then pop the CPU registers as its last action. This
action can be omitted if the CPU registers are not used in the ISR to speed up ISR execution. The
developer should pay close attention to whether the instructions in their ISR use the CPU registers,
especially emulated instructions. When a CPU register is used by the ISR in any capacity other than
passing variables back and forth, they should be preserved by pushing/popping them using the stack.

11.1.6 Nested Interrupts

As mentioned earlier, another one of the automatic steps that is accomplished by the interrupt system
is to clear SR before entering the ISR. Thismeans that maskable interrupts are disabled while executing an
ISR because GIE ¼ 0. Once the ISR completes and the SR is popped off the stack, the original value of
GIE¼ 1 is restored andmaskable interrupts are again enabled when the CPU returns to themain program.
System resets and non-maskable interrupts can always interrupt other lower priority ISRs because they
are not enabled by GIE. This is by design because system resets and non-maskable interrupts are high

Fig. 11.5
Operation of the stack during an interrupt

11.1 The Concept of an Interrupt • 261



priority events that must be serviced immediately to ensure the proper operation of theMCU and/or prevent
damage to the device. If it is desired to allow a maskable interrupt to interrupt another maskable IRQ, then
the developer must explicitly set the GIE bit within the ISR. Creating nested ISRs is not recommended
because it can lead to stack overflow or infinite ISR loops. A better approach is to create ISRs that are short
and fast and then rely on the MCU’s prioritization scheme to allow higher priority interrupts to be serviced
while lower priority interrupts wait in the pending state until the CPU is ready to act on them.

11.1.7 Interrupt Servicing Summary

Figure 11.6 shows a flow chart of the steps that are taken when an IRQ is serviced. Note that some
of the steps are taken automatically by the CPU while some are up to the developer.

Fig. 11.6
Sequence of tasks performed when servicing an interrupt
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When using maskable interrupts, it is important to keep in mind which tasks are taken care of
automatically by the MCU and those that the developer must do. When using a specific peripheral with a
maskable interrupt, the developer has the following responsibilities:

1. Configure the peripheral for the desired functionality.
2. Clear the peripheral’s interrupt flag (IFG).
3. Assert the local interrupt enable (IE) for the peripheral.
4. Assert the global interrupt enable (GIE) in the status register.
5. Write the ISR with an address label to mark its starting location and the reti instruction to

denote its end. Remember that the ISR must clear the peripherals local interrupt flag (IFG) so
that when the ISR completes, the peripheral doesn’t inadvertently trigger another IRQ.

6. Initialize the vector address for the peripheral using the ISR address label and assembler
directives.

11.1.8 MSP430FR2355 Interrupts

The MSP430FR2355 implements 25 unique interrupt vector addresses. Each address is used for
multiple interrupt flags. If multiple interrupts that share a vector address are enabled, then functionality
must be placed in the ISR to first determine which flag has been asserted and then execute the
appropriate service routine code.

The highest priority vector address implemented (FFFEh) is dedicated to system resets. This vector
is always initialized with the starting address of program memory so that if any type of reset occurs, the
MCU begins executing the main program code from its beginning. As mentioned before, the MCU does
not execute an ISR for system resets. Instead, it sets all configuration registers to their default faults and
loads PC with the starting address of program memory. In the case of the MSP430FR2355, PC is set to
8000h, which is the beginning of nonvolatile FRAM program memory.

The second and third highest priority addresses implemented (FFFCh and FFFAh) are dedicated to
non-maskable interrupts. Again, multiple situations are tied to each address. The vector FFFCh is used
for system non-maskable interrupts, which are hardware-level failures such as accessing memory
addresses that don’t have any systems mapped to them, memory access timing errors, and memory
bit-error detection. The vector FFFAh is used for user non-maskable interrupts, which include an external
input trigger and oscillator faults. Both NMI interrupt vectors execute ISRs when triggered, so it is the
developer’s responsibility to ensure the ISRs exist and the vector addresses are initialized. During
prototyping, the ISRs for the NMIs are often omitted due to the low likelihood of a system failure. But any
MCU put into an embedded application needs to have ISRs for NMIs to handle these failure conditions.

The remaining 22 interrupt vectors are used for maskable interrupts. None of these interrupts are
enabled unless explicitly done so by the developer. The MSP430FR2355 assigns eight of the vectors to
the timer system, one to the real time clock counter, one for the watchdog timer, four for the serial
communication system, one for the ADC, one for the comparator, two for the smart analog combo DACs,
and one for each of the four digital I/O ports.

Table 11.1 gives the interrupt vector table addresses, the associated sources, and the flags that are
associated with the vector. Also in this table are the CCS section names that can be used when
initializing the vector table using assembler directives.
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Table 11.1
MSP430FR2355 interrupt vector table (for assembly)
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CONCEPT CHECK

CC11.1 Why are interrupts given a priority?

A) They aren’t. The priority just gives a way to make documentation easier
to read.

B) Priority allows the MCU hardware designers to spend less time on some
circuits compared to other, more important peripherals.

C) Some events are more important than others and need immediate attention.

D) Priority gives the software designers an idea of which services routines to
implement first.

11.2 MSP430FR2355 Port Interrupts

Each bit within ports 1 ! 4 on the MSP430FR2355 has the ability to trigger an interrupt when
configured as an input and there is a transition on its pin. Ports 1 ! 4 each have their own dedicated
vector address; however, each bit within each port all share the port’s vector. So, it is the job of the
developer to determine which bit triggered the interrupt manually and which part of the associated ISR to
execute to service that bit.

The local enable for the port interrupts are configured in the Port Px Interrupt Enable (PxIE, or P1IE,
P2IE, P3IE, and P4IE) registers. Each bit within PxIE corresponds to the bit of the port (i.e., bit 0 of P1IE
enables the interrupt on bit 0 of P1). A 0 in PxIE indicates that the interrupt for that bit of the port is
disabled. A 1 in PxIE indicates that the interrupt for that bit of the port is enabled. PxIE is cleared on reset,
disabling the port interrupts. Since the port interrupts are maskable, the global interrupt for all bits is the
GIE bit in the status register.

The flags for the port interrupts are held in the Port Px Interrupt Flag (PxIFG, or P1IFG, P2IFG,
P3IFG, and P4IFG) registers. Upon reset, all bits in PxIFG are set to 0. Upon an interrupt, the flag is
asserted. Each bit within PxIFG corresponds to the bit of the port (i.e., if bit 0 of P1IFG is asserted it
means an interrupt has occurred on bit 0 of P1). Once a port IRQ is serviced, the bit’s flag needs to be
cleared in PxIFG by the developer.

The port interrupt system provides a prioritization scheme that can speed up determining which bit
of the port should be serviced first if multiple IRQs occur on a port simultaneously. The port interrupt
system prioritizes bit 0 as the highest priority and bit 7 as the lowest priority within the port. Dedicated
registers called the Port Px Interrupt Vector Word (PxIV, or P1IV, P2IV, P3IV, and P4IV) registers are
used to indicate priority when simultaneous port IRQs have occurred. PxIV is loaded with a unique
number corresponding to the bit that has just triggered an IRQ and also has the highest priority of any bits
within the port that may have also triggered an IRQ. This number can be used within the service routine
to quickly jump to the code associated with the highest priority bit. PxIV does not have a bitwise
correspondence to the port bit that caused the interrupt. The values it takes on represent which of the
8 inputs is pending with the highest priority. The values it will take on are: bit0 ¼ 02h, bit1 ¼ 04h,
bit2 ¼ 06h, bit3 ¼ 08h, bit4 ¼ 0Ah, bit5 ¼ 0Ch, bit6 ¼ 0Ch, and bit7 ¼ 10h. This register is read-only;
however, any access to PxIV (either read or write) will clear the port interrupt flag in PxIFG corresponding
to the highest priority being displayed in PxIV. This allows the system to handle the interrupts in the order
of their priority. Once the highest priority flag is cleared, it is expected that the ISR will complete and the
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next highest priority flag will trigger and the next highest priority bit will be serviced within the same vector
address. Note that using this prioritization feature is optional and the developer can simply use PxIFG to
determine which port bit has triggered the interrupt and which one to service first.

The last configuration setting for port interrupts is the ability to select which transition polarity triggers
the interrupt (i.e., rising or falling). The Port Px Interrupt Edge Select (PxIES or P1IES, P2IES, P3IES,
and P4IES) registers. A 0 in this register means the IRQ will be triggered on a low-to-high transition on
the pin. A 1 in this register means the IRQ will be triggered on a high-to-low transition. Each bit within this
register corresponds to the bit in the port it configures (i.e., if bit 0 of P1IES is a 1, and then a high-to-low
transition on bit 0 of P1 will trigger an IRQ).

Figure 11.7 gives a summary of the port interrupt configuration registers.

Fig. 11.7
Summary of port interrupt configuration registers
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When using port interrupts, there is a recommended initialization sequence to avoid inadvertent bit
assertions of flags due to the nature of power on. After reset, all ports are put into high-impedance input
mode with Schmitt triggers. In this state, the interrupts flags are susceptible to their values being
changed due to cross-currents associated with writing to other port configuration registers. As such,
there are some configuration steps that should be done prior to clearing the LOCKLPM5 bit (taking the
inputs out of high-impedance mode with Schmitt trigger mode) and some that are done after. The
recommended sequence from the MSP430FR2355 data sheet to configure a port interrupt is as follows:

1. Initialize the port direction (PxDIR), pull-up/down resistor (PxREN), the pull-up/down resistor
polarity (PxOUT), and the port interrupt edge select (PxIES).

2. Clear LOCKLPM5 bit.
3. Clear the port interrupt flags (PxIFG) for first use. Note that the reset value for PxIFG¼00h, but

often bits will be asserted inadvertently due to step 1.
4. Assert the local port interrupt enable (PxIE).
5. Assert the global enable for maskable interrupts (GIE bit in SR).

Let’s now look at configuring the push-button switch S1 on the LaunchPadTM board to trigger a port
interrupt. Let’s design a program that will toggle LED1 each time S1 is pressed using an interrupt. First,
let’s look at the signal behavior of S1 when pressed. Figure 11.8 shows a graphical depiction of the logic
levels and transitions that occur when S1 is pressed and released.

A few things to keep in mind when setting up a push-button interrupt:

• S1 is connected to Port4, bit 1. While the logic level of S1 can be observed on P4IN.1, when
using an interrupt, we don’t have to look at this bit. We instead allow a transition to assert an
interrupt flag and have the CPU execute an ISR accordingly.

• S1 is an SPSTswitch that is connected to ground. This means we need a pull-up resistor on the
MCU to provide the logic HIGH state when S1 is not pressed.

• If we want the IRQ to trigger immediately upon a button press, then we need to configure the
interrupt edge sensitivity (P4IES.1) to be high to low. When S1 is not pressed, P4.1 is at a logic
high. When the button is pressed, P4.1 goes to a logic low. If we leave the P4IES.1 sensitivity at
its default value of low-to-high sensitivity, the interrupt will only trigger once S1 is released (we’ll
look at this behavior in a following example).

• Since we are only using one bit within P4 to trigger an IRQ, we don’t need to use the P4IV
register to determine the highest priority bit that caused the IRQ. We will simply use the P4IFG
register knowing that we only care about bit1.

Fig. 11.8
Signal behavior of P4IN.1 when S1 is pressed
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• The port 4 interrupt vector address is FFCEh. This has a CCS section name of .int22. This is the
name we will use when we initialize the vector address using assembler directives.

• In the ISR, we will need to toggle LED1, clear the P4IFG.4 flag, and use reti to return from the
interrupt.

Follow Example 11.1 to see how a port interrupt can accomplish this functionality.

Example 11.1
Using a port interrupt on S2 to toggle LED1
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Now let’s take a look at the impact of the edge sensitivity on the button press. Follow Example 11.2
to see how changing the edge select value to be sensitive to a low-to-high transition makes the IRQ
trigger upon a button release.

Now let’s take a look at a common programming error that occurs when using IRQs. Follow
Example 11.3 to see what happens when the developer forgets to clear the IRQ flag in the ISR.

Example 11.2
Observing low-to-high port IRQ sensitivity on S1
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CONCEPT CHECK

CC11.2 If the port vector (PxIV) register isn’t used in the ISR to determine which pin interrupt has
triggered, what other method can be used?

A) Probing the signal with an oscilloscope.

B) Looking at the PxIE register settings.

C) Checking the PxIFG register values in the ISR bit by bit.

D) Checking the return address pushed onto the stack.

Summary

v Interrupts provide a way to efficiently deal
with peripherals that are asynchronous to
the CPU and slower than the CPU clock.

v When an interrupt occurs, it asserts a flag
and waits to be serviced by the CPU. While
waiting for the CPU to respond to it, the inter-
rupt is said to be pending.

v The CPU will service an interrupt only after it
finishes executing its current instruction.

When the interrupt is serviced, the CPU
stops execution of the main program and
instead executes an interrupt service routine
that is dedicated to the peripheral that trig-
gered the IRQ.

v Interrupts are prioritized in terms of their
importance. When a CPU is ready to service
an IRQ, it handles the highest priority first.
Multiple IRQs can be pending at once.

Example 11.3
Observing the impact of not clearing the IRQ flag
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v There are three classes of interrupts: system
resets, non-maskable interrupts, and
maskable interrupts.

v System resets are the highest interrupt. They
do not have developer written ISR; instead,
they initialize all configuration registers to
their default values and insert the starting
address of the main program into PC.

v Non-maskable interrupts are the next highest
priority interrupts. These handle memory
access or oscillator faults. They also handle
a user interrupt that can come from an exter-
nal signal. NMIs are always enabled and
execute a developer written ISR.

v Maskable interrupts have a local and global
enable. The local enable is unique to each
feature of each peripheral that can trigger
and interrupt. The global interrupt is the GIE
bit in the SR. For an interrupt to be active, it
must have both its local enable and GIE
asserted.

v The starting address of an ISR is put into its
interrupt vector address. The interrupt
vectors reside at dedicated addresses
reserved at the end of program memory.
The starting address of the ISR is placed
into the vector location using assembler
directives and the address label of the start
of the ISR.

v When an IRQ occurs, the CPU automatically
pushes the PC and SR onto the stack to
preserve the operation of the main program.
At the end of an ISR, the developer must use
the reti instruction to pop SR and PC off
the stack to return execution to the main
program.

v Interrupts can interrupt other interrupts.
Since system resets and NMIs are always
enabled, they can interrupt each other with

higher priority IRQs being able to interrupt
lower priority IRQs. When a maskable inter-
rupt occurs, the CPU automatically clears
SR, disabling other maskable interrupts.

v If a developer wishes to allow nested
maskable interrupts, they need to explicitly
set the GIE bit in the ISR. A better approach
is to write short ISRs and allow the IRQ pri-
oritization scheme handle the order the ISRs
are executed.

v When an IRQ is served, the MCU completes
the current instruction, pushes the PC and
SR to the stack, clears the SR, retrieves the
starting address of the ISR from the vector
table, executes the ISR, and then pops SR
and PC off the stack to return to normal exe-
cution in the main program.

v The MSP430FR2355 implements 25 unique
interrupt vectors. Each vector is associated
with multiple flags. If multiple peripheral
features are enabled and share the same
vector address, it is the job of the developer
to determine which flag caused the IRQ
within the ISR.

v A port interrupt is an IRQ that is triggered
when there is an input transition observed
on a bit of a port. This allows external signals
to be handled more efficiently compared to
polling.

v Each bit within ports 1 ! 4 can trigger an
interrupt; however, each port only has one
unique vector address.

v Port interrupts are configured using the
PxIFG, PxIES, PxIE, and PxIV (optional)
registers. To use a port interrupt, the pin
must also be configured as an input with an
optional pull-up/down resistor.

Exercise Problems

Section 11.1: The Concept of an Interrupt
11.1.1 Why is an interrupt more efficient than polling?

11.1.2 When an interrupt has raised its flag, but is
waiting for the CPU to service it, what state is
the interrupt said to be in?

11.1.3 What is the sequence of instructions that is
executed for an interrupt called?

11.1.4 How does the MCU decide which interrupt to
handle if multiple occur at the same time?

11.1.5 Can a system reset interrupt be disabled?

11.1.6 Can a non-maskable interrupt be disabled?

11.1.7 Are maskable interrupts enabled or disabled
after reset?

11.1.8 What is the global interrupt enable for
maskable interrupts?

11.1.9 What is the role of an interrupt vector?

11.1.10 How does the interrupt vector get initialized?

11.1.11 Where in the memory map does the interrupt
vector table reside?

11.1.12 What address value should be put into the
vector table location associated with the reset
condition so that after a reset occurs, the
MSP430FR2355 begins executing instructions
at the beginning of program memory?

11.1.13 What two registers are automatically pushed
onto the stack during an interrupt?
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11.1.14 What instruction is used at the end of an inter-
rupt service routine to return to the main
program?

11.1.15 By default, can a maskable interrupt interrupt
another maskable interrupt?

11.1.16 How many interrupt vectors are implemented
on the MSP430FR2355 MCU?

11.1.17 What is the vector address for reset on the
MSP430FR2355 MCU?

11.1.18 What is the vector address for Port 1 on the
MSP430FR2355 MCU?

11.1.19 What is the CCS section name for the reset
vector on the MSP430FR2355 MCU?

11.1.20 What is the CCS section name for the Port
1 vector on the MSP430FR2355 MCU?

Section 11.2: MSP430FR2355 Port
Interrupts
11.2.1 Are port interrupts maskable or

non-maskable?

11.2.2 When using a port interrupt, what is the pur-
pose of the PxIE register?

11.2.3 When using a port interrupt, what is the pur-
pose of the PxIFG register?

11.2.4 When using a port interrupt, what is the pur-
pose of the PxIV register?

11.2.5 When using a port interrupt, what is the pur-
pose of the PxIES register?

11.2.6 In the recommended sequence of steps for
using a port interrupt, does configuring PxIES
occur before or after clearing the
LOCKLPM5 bit?

11.2.7 In the recommended sequence of steps for
using a port interrupt, does configuring PxIFG
occur before or after clearing the
LOCKLPM5 bit?

11.2.8 When using the SPST push-button switches
on the LaunchPadTM board, does a low-to-
high or high-to-low transition setting on PxIES
provide a more responsive experience for
the user?

11.2.9 Why is it important for the developer to clear
the interrupt flag in the ISR?

11.2.10 Does a program that uses a port interrupt have
to use PxIV to determine which bit triggered the
port interrupt? Why or why not?
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Chapter 12: Introduction to Timers
This chapter introduces the concept of a timer to independently track and/or trigger events based on the

time elapsed [1–3]. A timer uses an independent, free-running, binary counter to track the passage of time.
Timersareaperipheral to theCPU,whichallows theCPUtohandleother taskswhile the timer runsseparately.
Timers can trigger interrupts that are then serviced by the CPU through routines. This chapter presents the
concept of a timer and then looks at the details of the timers available on the MSP430FR2355 MCU.

Learning Outcomes—After completing this chapter, you will be able to:

12.1 Describe the basic operation of an MCU timer.
12.2 Use the timer system on the MSP430FR2355 to generate periodic events based on timer

overflows.
12.3 Use the timer system on the MSP430FR2355 to generate periodic events based on timer

compares.
12.4 Use the timer system on the MSP430FR2355 to generate pulse width modulated signals

based on multiple timer compares.
12.5 Use the timer system on the MSP430FR2355 to perform timer captures.

12.1 Timer Overview

A timer is a binary counter that is clocked from a free-running clock with a known frequency. Since the
binary counter will increment on the triggering edge of the clock and the clock frequency is known, then the
time between count values is deterministic. The time elapsed can be found by simply multiplying the period
of the clock (T¼ 1/f ) by the number of counts that have occurred (N ). Time can bemonitored using timers
in a variety of ways including tracking the time between when the counter is cleared and a specific count
value, the time it takes for the counter to reach its maximum value and rollover (aka, overflow), or the
difference between two nonzero count values. In all cases, the amount of time elapsed is Δt ¼ T∙N.
Figure 12.1 shows a timing waveform of a 16-bit timer highlighting some key timing characteristics.

Fig. 12.1
Timer overview
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Let’s look a few examples of calculating how much time has passed using a timer. First, let’s start
with finding the amount of time between when the timer starts (or is cleared) and a specific value. When
the counter starts at 0, then the specific value we are comparing the timer to represents the total number
of counts that have occurred (N ). Example 12.1 shows an example of how to find the amount of time that
has elapsed between a counter that starts at 0000h and reaches ABCDh on a 16-bit counter running off
of a 1 MHz clock.

Next, let’s look at determining the amount of time between when a timer starts at 0 and when it
reaches its maximum value and rolls over back to 0. This is called the timer overflow period (Toverflow). As
always, the amount of time that has elapsed is found usingΔt¼ T∙N. In the case of timer overflow,N¼ 2n

where n is the width of the timer. Example 12.2 shows how to calculate Toverflow of a 16-bit counter
running off of a 32.768 kHz clock.

Example 12.1
Calculating the time elapsed between 0000h and ABCDh
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Next, let’s look at finding the amount of time that elapses between two specific values (i.e., where
the first value is not 0). Example 12.3 shows how to calculate the time elapsed between 2223h and
999Ah on a timer with a clock frequency of 1 MHz.

Example 12.2
Calculating the timer overflow period
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Often when tracking the time elapsed between two external events with a timer, there can be
multiple timer overflows between the events. This means that we must account for the additional time
beyond simply subtracting two specific timer values. Example 12.4 shows how to calculate the time
elapsed between two timer values when multiple overflows occur between the events.

Example 12.3
Calculating the time elapsed between 2223h and 999Ah
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The full MSP430 architecture contains three distinct timer sub-systems: Timer_A, Timer_B, and the
real-time clock counter (RTC). Within the Timer_A and Timer_B systems, there are multiple, independent
binary counters that provide separate timing capability. Each timer can generate interrupts when its value
either matches a value placed into a compare register or when it overflows. The timers also have the
ability to capture the current count value and store it into a register upon a triggering event. The capture
and compare registers (CCRs) are shared and referred to as capture/compare blocks in the MSP430
documentation. The MSP430FR2355 does not implement the Timer_A system, and we will cover the
RTC system later. As such, this chapter focuses on the details of the MSP430FR2355 Timer_B system.

Example 12.4
Calculating the time between values with overflows
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CONCEPT CHECK

CC12.1 If we use a clock frequency of 1 MHz to drive a counter and attempt to generate an event
every 1ms, what could possibly create error in our timer that would prevent us from not getting an
event exactly every 1 ms?

A) The counter might skip a few counts.

B) The counter could get interrupted by another peripheral.

C) Nothing. We will get exactly 1 ms events if we calculate the count value
correctly.

D) The clock frequency might not be exactly 1 MHz.

12.2 Timer Overflows on the MSP430FR2355

The MSP430FR2355 Timer_B system provides four independent timers (TB0, TB1, TB2, and TB3),
each with selectable clock inputs and the ability to divide down the clock to get slower counting
frequencies. Timers TB0, TB1, and TB2 each have three capture/compare registers associated with
them. As such, these timers are often referred to as Timer0_B3, Timer1_B3, and Timer2_B3 in the
MSP430 documentation. Timer TB3 has seven capture/compare registers so it is often referred to as
Timer3_B7. Note that capture/compares will be covered in the next sections. Figure 12.2 shows an
overview of the Timer_B architecture implemented on the MSP430FR2355.

At the core of the Timer_B system is a 16-bit, binary counter. The counter has a variety of settings
that are controlled by the user including the ability to program its counter length (16-bit, 12-bit, 10-bit, or
8-bit), the counting mode (halted, count up to a value, continuous counting, or up/down counting), and
the ability to clear the counter. The timer clock also has a variety of settings that allow the user to select a
frequency that is appropriate for their application. The first setting available for the timer clock is its
source. The timer system clock can come from one of two external pins (TBxCLK or INCLK) or from one
of two on-chip clock sources (ACLK or SMCLK). On the MSP430FR2355, ACLK has a frequency of
32.768 kHz and SMCLK has a frequency of 1 MHz. The timer system also allows the user to divide down
the incoming clock source in order to achieve even slower counting frequencies. There are two clock

Fig. 12.2
MSP430 Timer B overview
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dividers implemented in series in the Timer_B system. The first divider can divide the clock by 1, 2, 4, or
8. The second divider can divide the clock by 1, 2, 3, 4, 5, 6, 7, or 8. Since these two dividers are in series,
there are 32 different divider settings that can be applied to the clock ranging from a minimum divider of
1 to a maximum divider of 64.

When the Timer_B is put into continuous counting mode, it will count up to its maximum value and
then rollover to 0. When it goes from its maximum value (i.e., FFFFh for 16-bit counting mode) to 0000h,
a timer overflow is detected and can generate an interrupt. The local enable for this overflow interrupt is
TBIE. This interrupt is maskable, so its global enable is GIE. When enabled, the interrupt will assert the
timer overflow flag TBIFG.

All of the settings to control the Timer_B system(s) and use its timer overflow interrupts are held in
two configuration registers, the Timer_B Control Register (TBxCTL) and the Timer_B Expansion Regis-
ter 0 (TBxEX0). Figures 12.3 and 12.4 give the details of the TBxCTL and TBxEX0 registers respectively.
Note that these figures describe the control registers in general terms in order to describe the functional-
ity for multiple Timer_B timers. The “x” in these register names can take on a value of 0 ! 3 to denote a
specific binary counter. The MSP430FR2355 contains four Timer_Bs (TB0, TB1, TB2, and TB3), each
with their own control register (TB0CTL, TB1CTL, TB2CTL, and TB3CTL) and expansion register
(TB0EX0, TB1EX0, TB2EX0, and TB3EX0).

Fig. 12.3
Timer_B control register (TBxCTL) details

12.2 Timer Overflows on the MSP430FR2355 • 279



Let’s now look at using a timer overflow to generate an event at a specific time interval. The
recommended sequence of programming steps to configure the counter is as follows:

1. Write a 1 to the TBCLR bit (TBCLR ¼ 1) to clear TBxR, the clock divider states, and the counter
direction.

2. Apply desired configurations to TBxCTL.

Examples 12.5 and 12.6 provide an example of using the TB0 timer to generate an interrupt every
2 seconds. In this example, TB0 will use ACLK as its source and use the default settings of the two clock
dividers (i.e., divide-by-1). The timer will run with a 16-bit length (default) and in continuous mode so that
overflows happen indefinitely. When a timer overflow occurs, an interrupt will be triggered and the ISR
will toggle LED1.

Fig. 12.4
Timer_B expansion register 0 (TBxEX0) details
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Example 12.5
Toggling LED1 on TB0 overflow using ACLK (part 1)
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Now let’s look at an example where we want to use ACLK as the timer clock, but we want to speed
up the timer overflow period. We can do this by configuring the timer to have a smaller counter length. We
have the ability to choose either a 16-bit, 12-bit, 10-bit, or 8-bit length using the CNTL bits in the TB0CTL
register. Let’s change the length to 12 bits using the CNTL settings. This will result in a timer overflow
period of 125 ms. Examples 12.7 and 12.8 provide this example of using the TB0 timer to generate an
overflow using ACLK and a 12-bit counter length.

Example 12.6
Toggling LED1 on TB0 overflow using ACLK (part 2)
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Example 12.7
Toggling LED1 on TB0 overflow using ACLK and a 12-bit counter configuration (part 1)
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Let’s now look at using a very similar setup as in the past examples, but this time using SMCLK as
the timer clock. Examples 12.9 and 12.10 provide an example of using the TB0 timer to generate an
event every 65.5 ms. In this example, TB0 will use SMCLK as its source and use the default settings of
the two clock dividers (i.e., divide by 1). The timer will run with a 16-bit length (default) and in continuous
mode so that overflows happen indefinitely. When a timer overflow occurs, an interrupt will be triggered
and the ISR will toggle LED1. This will blink much faster than when using ACLK, but you will still be able
to see LED1 blink with the naked eye.

Example 12.8
Toggling LED1 on TB0 overflow using ACLK and a 12-bit counter configuration (part 2)
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Example 12.9
Toggling LED1 on TB0 overflow using SMCLK (part 1)
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Now let’s look at an example where we want to use SMCLK as the timer clock, but we want to slow
down the timer overflow period. We can do this by configuring one of the clock dividers to divide the
incoming clock. Let’s change the first divider stage to divide SMCLK by 4 (ID ¼ 10), giving a timer clock
frequency of 250 kHz. This will result in a timer overflow of 262 ms in the 16-bit configuration. Examples
12.11 and 12.12 provide this example of using the TB0 timer to generate an overflow using SMCLK with
a divide-by-4 clock setting.

Example 12.10
Toggling LED1 on TB0 overflow using SMCLK (part 2)
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Example 12.11
Toggling LED1 on TB0 overflow using SMCLK and a divide-by-4 clock configuration (part 1)
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Example 12.12
Toggling LED1 on TB0 overflow using SMCLK and a divide-by-4 clock configuration (part 2)
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CONCEPT CHECK

CC12.2 Can we use a 16-bit timer overflow by itself to trigger every 1 second if we clock the
system off of 1 MHz?

A) Yes. We simply alter the timer to have a maximum value of 1 million.

B) No. A 16-bit timer overflow will trigger every 65,536 μs. To get exactly
1 second, the clock frequency would need to change, or multiple overflows
plus extra counts would need to be used.

12.3 Timer Compares on the MSP430FR2355

A timer compare will trigger an event when the main timer value equals a value stored in one of the
MSP430’s capture/compare registers (CCR). These registers are used for either the compare function or
the capture function, which is why they are always referred to as CCRs and not simply compare
registers. When the values match, the CCR will assert a flag (CCIFG ¼ capture/compare flag) and
can trigger an interrupt if enabled. Each CCR has its own enable (CCIE ¼ capture/compare interrupt
enable) and is maskable with the GIE bit. The MSP430FR2355 implements three CCRs for TB0, TB1,
and TB2, which is why these timers are often referred to as Timer_B3. The MSP430FR2355 implements
seven CCRs for TB3, which is why this timer is often referred to as Timer_B7. The interrupt sources
share the two interrupt vectors for each timer. Figure 12.5 shows an updated diagram of the Timer_B
system with the capture/compare registers.

Fig. 12.5
Timer compare overview
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Each timer contains two interrupt vector addresses for the capture/compare sources. The MSP430
provides a prioritization scheme where the lower CCR number has the highest priority within the vector
(i.e., CCR1 has a higher priority than CCR2). The Timer_B x Interrupt Vector Register (TBxIV) holds a
code that represents the highest CCR IRQ that has occurred when multiple IRQs are pending at the
same time from the capture/compare system.

Each Timer_B CCR register is configured by its own Timer B Capture/Compare Control Register
(TBxCCTLn). The notation for this register is that “x” stands for the timer (TB0, TB1, TB2, and TB3) and
the “n” stands for the CCR number (TBxCCTL0, TBxCCTL1, and TBxCCTL2). Figure 12.6 shows the bit
functionality of the TBxCCTLn registers.

Fig. 12.6
Timer_B capture/compare control register (TBxCCTLn) details
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CCR0 has special functionality when the timer is put into “up” mode in that it dictates the maximum
value that the timer will count to before overflowing and continue counting at 0. This allows the overflow
period of the timer to be configured with a much finer resolution than when using the standard timer
overflow (TBIFG). A CCR0 overflow can set the overflow period within one period of the timer clock
compared to TBIFG, which only has an overflow resolution of 2n.

Let’s look at an example of using a timer compare to generate an event every 0.5 seconds. We will
use ACLK as the timer source without any division. We need to put the timer into “up”mode to enable the
compare functionality for CCR0. We then need to load CCR0 with the compare value that we want to use
as the maximum value of the timer before it overflows and starts counting at 0. This is found using the
Δt ¼ T∙N equation where, in this instance, we are solving for N. We plug in Δt ¼ 0.5 s as the overflow
period we are trying to achieve. We plug in T ¼ 1/(32,768 kHz) since we are using ACLK without any
dividers. Finally, we solve for N and get 16,384. This is the value we will put into CCR0 in order to set the
maximum value for the timer. Once the timer reaches this value and overflows back to 0, CCIFG will be
asserted. To enable an interrupt to be triggered by the CCIFG, we set CCIE and GIE. The interrupt
service routine will simply toggle LED1 and clear CCIFG each time it is executed. The vector address we
need to use is the one with TB0CCR0 CCIFG0 listed in the interrupt flag column for Timer0_B3, which is
FFF8h with the literal .int43. Examples 12.13 and 12.14 show how to implement this timer compare
design.

Example 12.13
Toggling LED1 using a CCR0 compare (part 1)
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Example 12.14
Toggling LED1 using a CCR0 compare (part 2)
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CONCEPT CHECK

CC12.3 When would a timer compare produce the same period as an n-bit timer overflow?

A) When the value of the compare register is 2n.

B) When both run off of the same clock frequency.

C) When both are in the same timer peripheral.

D) When both use interrupts to toggle a port.

12.4 Creating Pulse Width Modulated Signals Using Timer Compares

Timer compares allow multiple events to be generate as the timer increments through its counts.
One very popular type of electrical signal that can be generated with timer compares is a pulse width
modulated (PWM) signal. PWM signals are used for motor control, for dimming LEDs, and to communi-
cate information. A PWM signal is a periodic signal where the amount of time that it is HIGH is called its
On Time. We define the PWM Duty Cycle as the percentage of the period that it is high, which is found by
simply dividing the On Time by the PWMPeriod. When using PWM signals, altering the duty cycle is how
control of a separate system is achieved. For example, some motors will spin faster as the duty cycle
increases and even reverse directions when the duty cycle drops below a certain value. Figure 12.7
shows the details of a PWM signal highlighting some of the key timing characteristics.

A PWM can be created using the Timer_B system by setting up two compare registers. The first
register is CCR0, which will hold the count value corresponding to the period of the PWM signal. The
second register, CCR1, will hold the count value corresponding to the amount of on time that is desired.
Upon startup, the PWM signal is initialized to a 1. When the first compare occurs on CCR1, the
associated ISR will drive the PWM signal to a 0. When the second compare occurs on CCR0, the
associated ISR will drive the PWM signal to a 1. This process repeats forever and creates the desired
PWM signal with the desired duty cycle. Figure 12.8 shows the theory of how to use two timer compare
interrupts to generate a PWM signal.

Fig. 12.7
Pulse width modulated (PWM) signal definition
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Let’s look at an example of creating a PWM signal on the MSP430FR2355. Let’s drive LED1 with a
PWM signal that will have a period of 1 second and a duty cycle of 5%. This will result in LED1 coming up
for a very short amount of time each period. To accomplish this, let’s use TB0 with a clock source of
ACLK with no dividers. We will use CCR0 to set the period of the PWM signal to 1 second and CCR1 to
set the duty cycle to 5%, or 50 ms. Examples 12.15 and 12.16 show how to implement this program.

Fig. 12.8
Creating a PWM signal with multiple timer compares
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Example 12.15
Flashing LED1 with a 5% duty cycle PWM using multiple compares (part 1)
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Example 12.16
Flashing LED1 with a 5% duty cycle PWM using multiple compares (part 2)
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CONCEPT CHECK

CC12.4What limits the smallest duty cycle time that can be obtained when using a timer to create
the signal?

A) The period of the clock because it represents the smallest time amount in a
counter (i.e., one count period).

B) The length of the counter.

C) How much you can divide the incoming clock.

D) The number of compare registers available in the timer system.

12.5 Timer Captures on the MSP430FR2355

A timer capture will store the current value of the timer into one of the capture/compare registers
upon a triggering event. This function can be used to measure time between events, both externally or
internally. The capture mode is selected with CAP ¼ 1 in the TBxCCTLn register. A triggering event can
be an external signal or an internal system. A transition on the internal signal Capture/Compare Input
(CCI) will cause a capture. The edge polarity on CCI that triggers the capture is dictated by the Capture
Mode (CM) bits within TBxCCTLn and supports, rising edge, falling edge, or both edge sensitivity. The
source for CCI can come from four different inputs: CCIxA, CCIxB, VCC, or GND. The source for CCI is
dictated by the Capture/Compare Input Select (CCIS) bits within TBxCCTLn. The CCIxA and CCIxB
signals are generic names for inputs that are connected differently on each MCU. For the
MSP430FR2355, they are connected to the external timer clock inputs (TBxCLK), the internal
comparators, and some of the compare register outputs. The device-specific data sheet lists out the
exact connections for each CCIxA and CCIxB signals for each timer.

A capture event can also be triggered by software by manually creating an edge on CCI. This is
done using the CCIS bits to manually create an edge using a transition between the VCC and GND
inputs to the CCI select multiplexer.

CONCEPT CHECK

CC12.5 What information can you determine about an incoming signal using a timer capture?

A) Its duty cycle.

B) Its period.

C) Its frequency.

D) All of the above.
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Summary

v A timer is a binary counter that runs indepen-
dently of the CPU. This allows it to track the
passage of time without requiring CPU exe-
cution cycles.

v A timer can trigger interrupts when it
overflows or when it reaches a certain value
held in a compare register.

v A timer can also store the current count value
into a capture register when an event occurs.

v The time that it takes for the counter to
increment by 1 is the period of the clock
(T ¼ 1/f ).

v The amount of time that has elapsed is
found by Δt ¼ T�N where N is the number of
counts.

v An overflow occurs when the timer goes from
its maximum value back to 0. This amount of
time is called the timer overflow period and is
given by Toverflow ¼ T�2n where n is the num-
ber of bits in the counter.

v When tracking the passage of time between
two external events and overflow occurs, the
calculation of time must account for each
overflow.

v The MSP430FR2355 contains a Timer_B
system with four, 16-bit, independent binary
counters.

v TB0, TB1, and TB2 each have three capture/
compare registers, so they are often referred
to as Timer_B3 timers. TB3 has seven cap-
ture/compare registers so it is often referred
to as a Timer_B7 timer.

v Each of the four timers on the
MSP430FR2355 has two dedicated interrupt
vector addresses. Each vector address is
shared amongst a number of flags for that
timer.

v The Timer_B system on the MSP430FR2355
allows the clock source to be selected among
four inputs: TBxCLK, ACLK, SMCLK, and
INCLK. TBxCLK and INCLK come from
external pins on the MCU. ACLK and
SMCLK come from internal oscillators on
the MCU.

v ACLK has a frequency of 32.768 kHz and
SMCLK has a frequency of 1 MHz.

v The clock sources for the Timer_B counters
can be divided down to achieve slower
counting frequencies.

v The Timer_B counters can be configured to
have different lengths (16-bit, 12-bit, 10-bit,
and 8-bit).

v The Timer_B counters can be configured to
count in different modes (halted, up, continu-
ous, or up/down).

v The setup of the Timer_B counters and the
overflow interrupts are configured using the
TBxCTL and TBxEX0 registers. All four

Timer_Bs (TB0, TB1, TB2, and TB3) have
their own configuration registers (TB0CTL,
TB1CTL, TB2CTL, TB3CTL, TB0EX0,
TB1EX0, TB2EX0, and TB3EX0).

v A timer compare occurs when the timer value
equals the value that was put into a capture/
compare register.

v A timer compare can generate interrupts at
timing intervals that have more precision
than the standard timer overflow (TBxIFG)
because it is based on an individual count
value instead of a rollover at 2n counts.

v The CCR0 capture/compare register has a
special functionality when the counter is in
“up” mode in that it sets the maximum value
of the timer before it overflows. This can be
used when a timer period is sought that is
less than its maximum value of 2n.

v Each capture/compare register can generate
an interrupt; however, every timer only has
two interrupt vectors, so multiple sources
share each vector address.

v The TBxIV register will indicate the highest
priority source on a shared interrupt vector.

v Each CCR is configured by its own Timer_B
Capture/Compare Control Register n
(TBxCCTLn).

v Multiple CCR events on the same timer can
be used to create pulse width modulated
(PWM) signals.

v A PWM signal has a period and a duty cycle.
The period is the amount of time before the
signal repeats. The duty cycle is the percent-
age of time that the signal is “on” (also called
the on time).

v PWM signals are used to control motors, dim
LEDs, and communicate information.

v PWM signals are created on the MSP430 by
using a CCR0 event to dictate the period and
a CCR1 event to dictate the duty cycle.

v A timer capture event will store the current
value of the timer into a capture/compare
register when an event occurs.

v Timer captures allow the time to be
measured between events.

v A timer capture event is triggered by a transi-
tion on the CCI signal. CCI is driven by either
an external pin, an internal system, VCC or
GND. The internal signal connections for a
capture differ between MCUs and even
between timers. The specific connections
are given in the device-specific data sheet.

v A capture can be created in software by
manually creating an edge on the CCI
signals by switching its source between
GND and VCC (or vice versa depending on
the desired polarity).
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Exercise Problems

Section 12.1: Timer Overview
12.1.1 How long does it take to increment a timer’s

binary counter by 1 if the clock frequency is
known? Give the equation.

12.1.2 What is the equation for how much time has
elapsed between 0 and a count value assum-
ing no overflow has occurred?

12.1.3 What is the equation for the timer overflow
period Toverflow?

12.1.4 What is the equation for the difference in time
between two values when overflow(s) occur
between the two values?

12.1.5 If the timer clock is 500 kHz, what is the period
of an individual count?

12.1.6 If the timer clock is 250 kHz, what is the period
of an individual count?

12.1.7 If the timer clock is 16.384 kHz, what is the
period of an individual count?

12.1.8 If the timer clock is 8.192 kHz, what is the
period of an individual count?

12.1.9 If the timer clock is 1 MHz, how much time
elapses between the two values 5555h and
9999h if no overflow has occurred?

12.1.10 If the timer clock is 500 kHz, how much time
elapses between the two values 5555h and
9999h if no overflow has occurred?

12.1.11 If the timer clock is 250 kHz, how much time
elapses between the two values 5555h and
9999h if no overflow has occurred?

12.1.12 If the timer clock is 32.768 kHz, how much time
elapses between the two values 5555h and
9999h if no overflow has occurred?

12.1.13 If the timer clock is 16.384 kHz, how much time
elapses between the two values 5555h and
9999h if no overflow has occurred?

12.1.14 If the timer clock is 8.192 kHz, how much time
elapses between the two values 5555h and
9999h if no overflow has occurred?

12.1.15 If the timer clock is 500 kHz, what is the timer
overflow period for a 16-bit counter?

12.1.16 If the timer clock is 500 kHz, what is the timer
overflow period for an 8-bit counter?

12.1.17 If the timer clock is 250 kHz, what is the timer
overflow period for a 16-bit counter?

12.1.18 If the timer clock is 250 kHz, what is the timer
overflow period for an 8-bit counter?

12.1.19 If the timer clock is 16.384 kHz, what is the
timer overflow period for a 16-bit counter?

12.1.20 If the timer clock is 16.384 kHz, what is the
timer overflow period for an 8-bit counter?

12.1.21 If the timer clock is 8.192 kHz, what is the timer
overflow period for a 16-bit counter?

12.1.22 If the timer clock is 8.192 kHz, what is the timer
overflow period for an 8-bit counter?

12.1.23 If the timer clock is 500 kHz and the counter
length is 16-bits, how much time elapses
between Value1 ¼ 7777h and Value2 ¼ 2222h
if 3 overflows also occur?

12.1.24 If the timer clock is 250 kHz and the counter
length is 16-bits, how much time elapses
between Value1 ¼ 7777h and Value2 ¼ 2222h
if 3 overflows also occur?

12.1.25 If the timer clock is 16.384 kHz and the counter
length is 16-bits, how much time elapses
between Value1 ¼ 7777h and Value2 ¼ 2222h
if 3 overflows also occur?

12.1.26 If the timer clock is 8.192 kHz and the counter
length is 16-bits, how much time elapses
between Value1 ¼ 7777h and Value2 ¼ 2222h
if 3 overflows also occur?

Section 12.2: Timer Overflows on the
MSP430FR2355
12.2.1 If you are using the Timer_B system and want

to select ACLK as the clock source, what
should you set TBSSEL to?

12.2.2 If you are using the Timer_B system and want
to select SMCLK as the clock source, what
should you set TBSSEL to?

12.2.3 If you are using the Timer_B system and want
to divide the incoming clock by 2 using the first
divider stage, what should you set ID to?

12.2.4 If you are using the Timer_B system and want
to divide the incoming clock by 8 using the first
divider stage, what should you set ID to?

12.2.5 If you are using the Timer_B system and want
to divide the incoming clock by 2 using the
second divider stage, what should you set
IDEX to?

12.2.6 If you are using the Timer_B system and want
to divide the incoming clock by 7 using the
second divider stage, what should you set
IDEX to?

12.2.7 If you are using the Timer_B system and want
to configure the counter length to 8-bits, what
should you set CNTL to?

12.2.8 If you are using the Timer_B system and want
to configure the counter length to 10-bits, what
should you set CNTL to?

12.2.9 If you are using the Timer_B system and want
to configure the counter mode to “up,” what
should you set MC to?

12.2.10 If you are using the Timer_B system and want
to configure the counter mode to “up/down,”
what should you set MC to?

12.2.11 What is the timer overflow period if you config-
ure the Timer_B to use ACLK, divided by
4, with a counter length of 8?
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12.2.12 What is the timer overflow period if you config-
ure the Timer_B to use ACLK, divided by
8, with a counter length of 16?

12.2.13 What is the timer overflow period if you config-
ure the Timer_B to use SMCLK, divided by
8, with a counter length of 8?

12.2.14 What is the timer overflow period if you config-
ure the Timer_B to use ACLK, divided by
2, with a counter length of 16?

Section 12.3: Timer Compares on the
MSP430FR2355
12.3.1 What mode does the counter need to be in to

use a CCR0 event to set the maximum timer
value before overflow?

12.3.2 What is the name of the configuration register
that handles setting up the CCRs?

12.3.3 What is the name of the register that provides a
unique code with the highest priority CCR that
has occurred when multiple CCIFG have been
asserted?

12.3.4 Howmany capture/compare registers does the
TB0 system have?

12.3.5 Howmany capture/compare registers does the
TB3 system have?

12.3.6 If you are using ACLK with no dividers as the
timer clock with the timer running in 16-bit up
mode, how long does it take for overflow if
CCR0 ¼ 1234h?

12.3.7 If you are using ACLK with no dividers as the
timer clock with the timer running in 16-bit up
mode, how long does it take for overflow if
CCR0 ¼ 5555h?

12.3.8 If you are using SMCLK with no dividers as the
timer clock with the timer running in 16-bit up
mode, how long does it take for overflow if
CCR0 ¼ 1234h?

12.3.9 If you are using SMCLK with no dividers as the
timer clock with the timer running in 16-bit up
mode, how long does it take for overflow if
CCR0 ¼ 5555h?

12.3.10 If you are using SMCLK with no dividers as the
timer clock with the timer running in 16-bit up
mode, how long does it take for overflow if
CCR0 ¼ 2000h?

12.3.11 If you are using SMCLK with no dividers as the
timer clock with the timer running in 16-bit up
mode, how long does it take for overflow if
CCR0 ¼ 3000h?

Section 12.4: Creating Pulse Width
Modulated Signals Using Timer
Compares
12.4.1 How long is a PWM signal HIGH for if the

period is 500 ms and the duty cycle is 10%?

12.4.2 How long is a PWM signal LOW for if the period
is 500 ms and the duty cycle is 10%?

12.4.3 How long is a PWM signal HIGH for if the
period is 750 ms and the duty cycle is 10%?

12.4.4 How long is a PWM signal LOW for if the period
is 750 ms and the duty cycle is 10%?

12.4.5 You are going to generate a PWM signal with a
period of 700 ms and a duty cycle of 10%. You
are using ACLK with no dividers as the timer
clock with the timer running in 16-bit up mode.
What value should you put into CCR0 to set the
PWM period?

12.4.6 You are going to generate a PWM signal with a
period of 700 ms and a duty cycle of 10%. You
are using ACLK with no dividers as the timer
clock with the timer running in 16-bit up mode.
What value should you put into CCR1 to set the
PWM duty cycle?

12.4.7 You are going to generate a PWM signal with a
period of 200 μs and a duty cycle of 5%. You
are using SMCLK with no dividers as the timer
clock with the timer running in 16-bit up mode.
What value should you put into CCR0 to set the
PWM period?

12.4.8 You are going to generate a PWM signal with a
period of 200 μs and a duty cycle of 5%. You
are using SMCLK with no dividers as the timer
clock with the timer running in 16-bit up mode.
What value should you put into CCR1 to set the
PWM duty cycle?

12.4.9 You are going to generate a PWM signal with a
period of 500 μs and a duty cycle of 10%. You
are using SMCLK with no dividers as the timer
clock with the timer running in 16-bit up mode.
What value should you put into CCR0 to set the
PWM period?

12.4.10 You are going to generate a PWM signal with a
period of 500 μs and a duty cycle of 10%. You
are using SMCLK with no dividers as the timer
clock with the timer running in 16-bit up mode.
What value should you put into CCR1 to set the
PWM duty cycle?

Section 12.5: Timer Captures on the
MSP430FR2355
12.5.1 What bit in the TBxCCTLn register is used to

put the CCR system into capture mode?

12.5.2 What bits in the TBxCCTLn register are used to
control the edge polarity that triggers a
capture?

12.5.3 What bits in the TBxCCTLn register are used to
select the source for the capture triggering
signal CCI?

12.5.4 How can a capture event be generated by
software?

12.5.5 If the source for the capture triggering signal
CCI differ between MCU and even between
timers, how can I find the specific connections
for a device?
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Chapter 13: Switching to the C
Language

This chapter starts looking at programming the MSP430FR2355 in C [1–3,11]. C is one of the most
common languages to program embedded computers. This chapter assumes that the reader has had
some exposure to programming using a higher-level language, so not every construct of the C language
will be covered; instead, only the functionality of the MSP430FR2355 that has already been covered will
be presented. The goal of this chapter is that after completion, the reader can do everything that has
been presented thus far in this book in assembly, but using C.

Learning Outcomes—After completing this chapter, you will be able to:

13.1 Implement basic programming techniques in C.
13.2 Implement programs in C that use the digital I/O system of the MSP430FR2355.
13.3 Implement programs in C that use interrupts on the MSP430FR2355.
13.4 Implement programs in C that use the timer system on the MSP430FR2355.

13.1 Basics of C Programming on the MSP430

Let’s start by looking at the template of a C program on the MSP430FR2355. CCS automatically
provides a main.c template for new projects. Follow Example 13.1 to start a new C project.

Example 13.1
Examining the CCS C template provided by CCS

# The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. J. LaMeres, Embedded Systems Design using the MSP430FR2355 LaunchPad™,
https://doi.org/10.1007/978-3-031-20888-1_13

301

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20888-1_13&domain=pdf
https://doi.org/10.1007/978-3-031-20888-1_13#DOI


There are a few important things to note in the template shown in Example 13.1. First, the program
file that is created is now called main.c instead of main.asm. Next, the msp430.h header file with all of the
bit masks and address name literals is included using the #include<msp430.h> statement. This is
the standard way to include header files in C. The main program in C is indicated by the int main

(void) statement with the program residing within curly brackets afterward. This is how the main
program is defined in all C files. This can be thought of as a routine call that is named main that will return
an integer (e.g., the reason for the int part of the statement). The (void) portion of the routine signifies
that there are no variables passed into the routine. The last statement in the main loop is return 0;,
which means that when it completes, it will return the integer 0 to the calling program. In an embedded
program, there is no concept of the programming ending. As such, we never want the return 0 statement
to be executed. This means we will always need a looping structure within the main program curly
brackets. Also shown is an example statement that disables the watchdog timer.

Example 13.1 also shows the two ways that comments are entered in C. The first is called a block
comment and begins with /* and ends with */. Anything between the starting and ending syntax will be
treated as a comment. Block comments can span multiple lines. The second type of comment in C is
called a line comment and beings with //. Anything after the starting syntax to the end of the line will be
treated as a comment.

Also, of interest in Example 13.1 is what is not explicitly coded. We do not need to explicitly define
the reset vector as it is done automatically for us outside of the main.c functionality. The C linker file
contains information to load the starting address of program memory into the reset vector address.
Additionally, we do not need to initialize the stack pointer because it is also done for us. The linker file
handles initializing the SP register to the last address of data memory +1. We also don’t need to define
whether lines of code represent information that will go into program memory as opcodes and operands
or into data memory as numbers. The C compiler will know whether each line is to be interpreted as an
instruction or storage allocation. This gives the compiler the ability to use whatever storage type is most
optimal for the program. For example, the standard C syntax to define an integer such as int i¼0 could
result in either the use of a CPU register, the stack, or a location in data memory to hold the integer
i. When using a high-level language such as C, we give up the lower-level control of the hardware in
exchange for abstraction. The abstraction allows our programs to focus more on accomplishing tasks as
opposed to interfacing with the registers and memory at the bit level as in assembly.

13.1.1 While() Loops in C

Let’s now look at some of the common operations that are used when programming an MCU. First,
let’s look at a while() loop. A while() loop will execute as long as the Boolean condition provided within its
parenthesis is true. A while(1) condition will create an infinite loop because the condition 1¼ true. This is
how we implement looping forever as we did with the jmp main syntax in assembly. Let’s look at an
example of a while() loop that loops forever while incrementing a variable named count. Example 13.2
shows an example of creating this while() loop functionality in C. One important item to note when
running C programs on the MSP430 is that the compiler will attempt to optimize the program by default.
The C compiler is very efficient at recognizing code that doesn’t access the outside of the MCU and can
be omitted. For our C examples, we don’t want the compiler to optimize out any code because we want to
observe the program operation step-by-step as it was written. So, some of the C examples in this book
should be compiled with optimization turned off. Another interesting note about the code in Example 13.2
is where the variable “count” is stored. The compiler will automatically decide the most efficient place to
store a variable. It has the option of storing the variable in a CPU register, in data memory, or on the stack.
In Example 13.2, the compiler decided to store count on the stack. This can be determined by looking at
the address location of count in the Variable Viewer. As a programmer, we don’t need to explicitly define
the location of the storage allocation; instead, we just program at a higher-level of abstraction and leave it
to the compiler to decide the most efficient location for variable storage.
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Example 13.2
While() loops in C
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13.1.2 For() Loops in C

Now let’s look at an example of a for() loop in C. A for() loop allows us to easily manage the number
of times the loop will execute by using a loop variable. We can specify the loop variable’s starting value,
its end value, and how to increment/decrement it each time through the loop. The loop variable can be
used to perform operations on other variables or as an index for addresses. Example 13.3 shows an
example of a for() loop that will execute ten times using a loop variable named i. Each time through the
loop it will assign the value of i to another variable named count. Note that to keep the program from
ending, we need to nest the for() loop inside of a while(1) loop.

Example 13.3
For() loops in C
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13.1.3 If/Else Statements in C

Now let’s look at implementing an if/else statement in C. Example 13.4 shows a program that will
use an if/else statement to set a variable named “it_is_TWO” when another variable “i” is equal to 2. In
order to cycle through different values of i, a for() loop is used.

Example 13.4
If/else statements in C
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13.1.4 Switch/Case Statements in C

Now let’s look at implementing a switch/case statement in C. Example 13.5 shows a program that
will use a switch/case statement to set variables named “it_is_ONE” and “it_is_TWO” when another
variable “i” is equal to 1 or 2, respectively. In order to cycle through different values of i, a for() loop is
used.

Example 13.5
Switch/case statements in C
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13.1.5 Arithmetic Operators in C

Let’s look at some of the basic arithmetic operations provided in C. These are addition (+),
subtraction (�), increment (++), and decrement (��). Follow Example 13.6 to see how these operations
work on the MCU.

13.1.6 Bitwise Logic Operators in C

Let’s look at bit manipulation operations in C. These types of instructions allow us to set, clear, or
toggle bits within a variable or register. These operations are critical to setting up the sub-systems on an
MCU. In assembly, these were accomplished using the bis (bit set) and bic (bit clear) instructions.
Table 13.1 lists some of the common bit manipulations we will be using in C.

Example 13.6
Arithmetic operations in C
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Follow Example 13.7 to see how these operators work on the MSP430FR2355. Also shown in
Example 13.7 is how to initialize variables using either binary or hexadecimal format.

Table 13.1
Bitwise logic operators in C
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Example 13.7
Bitwise logic operations in C
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CONCEPT CHECK

CC13.1 Does the different bit manipulation syntax supported in C result in different instructions
being used?

A) No. The compiler will compile into the same instructions.

B) Yes. We need to be careful using the shorthand syntax because it might
leave out a few critical instructions that make the program error prone.

13.2 Digital I/O in C

Now let’s look at programming the digital I/O system on the MSP430FR2355 in the C language. All
of the steps that we had to do in assembly to configure the I/O system still need to be done in C. When
using a port as an output, we need to configure its direction to an output (PxDIR¼ 1) and then disable the
I/O low power mode by clearing the LOCKLPM5 bit in PM5CTL0. We use bitwise logic operations to do
this configuration. Once the I/O system is enabled, we can simply write logic levels to the port (PxOUT).
Follow Example 13.8 to see how to use the digital outputs of the MSP430FR2355. Note that this example
is intended to be stepped so that you can observe the execution of each statement.

Example 13.8
Using a digital output to drive LED1 in C
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Let’s look at how we can incorporate a delay loop in order to slow down how fast an output port is
written to. Follow Example 13.9 to see how a for() loop can be used to create delay. This program will
blink LED1 on and off continuously about two times per second.

Now let’s look at using a port as an input. Again, all of the steps that were covered when using a port
input in assembly need to be done in C. These include setting the port direction to an input (PxDIR ¼ 0),
enabling a pull-up/down resistor (PxREN ¼ 1) if applicable, and setting the polarity of the resistor
(PxOUT). Once configured, the input can be read from (PxIN). Let’s examine how we can use a while
(1) loop and an if/else statement to continually check the value of an input port. In this example, we will
poll S1 on theMSPFR2355 board. Recall that S1 is a HIGHwhen not pressed and a LOWwhen pressed.
We can read the input by simply making an assignment statement between PxIN to an internal variable
(we’ll call the internal variable “SW1”). One additional step that must be performed when assigning the
port to a variable is to clear the unused bits in the SW1 variable. In the case of using S1 (P4.1), we only

Example 13.9
Making LED1 blink on and off in C
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care about bit 1. Once we assign P4IN to SW1, we can clear out all other bits in the variable using a
bitwise ANDwith 0b00000010. Once this is done, SW1 can be used to check if the button was pressed. If
the button is not pressed, then SW1 will equal 0b00000010. If the button is pressed, then SW1 will equal
0b00000000. We can then use SW1 in an if/else statement by checking whether it is 0 or not 0 (i.e., if
(SW ¼¼ 0)). Follow Example 13.10 to see how an input can be polled in C.

Example 13.10
Polling the input S1 with delay in C
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CONCEPT CHECK

CC13.2 Which C construct covered used in digital I/O is the closest to a 1-to-1 mapping to an
assembly language instruction?

A) A while(1) loop to create an infinite loop.

B) An if/else statement within a while() loop to poll an input.

C) A for() loop to create delay.

D) A bit manipulation statement to set or clear bits in a configuration register.

13.3 Interrupts in C

Now let’s look at how to program interrupts in C on the MSP430FR2355. We’ll start with a port
interrupt since that was how we started learning interrupts in assembly. Let’s review the steps that we
need to take to use a maskable port interrupt:

1. Configure the peripheral for the desired functionality.
2. Clear the peripheral’s interrupt flag (PxIFG).
3. Assert the local interrupt enable (PxIE) for the peripheral.
4. Assert the global interrupt enable (GIE) in the status register.
5. Write ISR with an address label to mark starting location and the reti instruction to denote its

end. Remember that the ISR must clear the peripherals local interrupt flag (PxIFG) so that when
the ISR completes, the peripheral doesn’t inadvertently trigger another IRQ.

6. Initialize the vector address for the peripheral using the ISR address label and directives.

Let’s specifically look at setting up an IRQ on P4.1 since this is connected to S1 on the
MSP430FR2355 LaunchPadTM board. Steps 1 through 3 in the above list are accomplished using
bitwise logical operations just as was shown in the prior section on digital I/O. For step 1 we need to
set the direction of the port to an input (P4DIR), enable the pull-up/down resistor (P4REN), and configure
the resistor’s polarity (P4OUT). There is one additional statement that is needed when configuring the
port peripheral for an interrupt, which is setting the IRQ sensitivity (P4IES). For step 2, we use a bitwise
logic operation to clear the interrupt flag (P4IFG). For step 3, we use a bitwise logic operation to enable
the IRQ (P4IE). For step 4, the CCS environment provides a unique function to enable maskable
interrupts. We can use the function __enable_interrupt() in our program to set the GIE bit in the
status register. This function implements the functionality of bis.w #GIE, SR.

For steps 5 and 6, the CCS environment provides a concise way to label our interrupt service
routine, initialize the vector table and denote that our routine is an ISR and should be compiled to use
reti. We use the #pragma directive to specify the interrupt vector we are initializing. A #pragma
directive allows us to provide additional information to the compiler beyond what is described in our
C statements. In CCS we use the syntax #pragma vector¼<VECTOR_LABEL> to indicate the vector
address to initialize. The VECTOR_LABEL in C is different from the labels we used in assembly.
Table 13.2 gives the VECTOR_LABELs for the MSP430FR2355 in C that are provided in the CCS.
For our P4.1 example, we use the syntax: #pragma vector¼PORT4_VECTOR. This directive line tells
the compiler that the routine that is listed next in our main.c will be the ISR. It then takes the starting
address of this routine and inserts it into the vector table.
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Next, we need to write our ISR. As mentioned in the last paragraph, it is critical that our routine
comes immediately after the #pragma vector¼<VECTOR_LABEL> directive. CCS provides the function
__interrupt to denote that the routine is an ISR and not a subroutine. This is critical because our ISR
needs to be compiled so that it uses reti at the end instead of ret so that the appropriate steps are
followed to return from the interrupt. Just as in assembly, our service routine needs to clear the IRQ flag
each time it executes to avoid continually triggering.

Table 13.2
MSP430FR2355 interrupt vector table (for C)

314 • Chapter 13: Switching to the C Language



Example 13.11 shows the code to implement a P4.1 interrupt that, when triggered, will toggle LED1.
Follow this example to see how to program a port interrupt in C on the MSP430FR2355.

Example 13.11
Using a port interrupt on S1 to toggle LED1 in C
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CONCEPT CHECK

CC13.3 Why are the CCS interrupt vector names different between C and assembly?

A) I have no idea! My guess is the assembly vector table names were created
first. Then later somebody else came up with the names in C that were
supposed to make more sense. It was probably too late to change the older
names since they are already in use. If you know, please email me!

13.4 Timers in C

Now let’s look at how to program the timer system on the MSP430FR2355 in C. Just as in assembly,
this involves setting up the timer system, enabling timer IRQs, and then creating an ISR that will
accomplish the desired task. Follow Example 13.12 to toggle LED1 every time there is a timer overflow.
Example 13.12 uses ACLK (32.768 kHz) as the timer source.
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Example 13.12
Toggling LED1 on TB0 overflow using ACLK in C
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Next, let’s look at how to speed up the overflow period by changing the timer length. Follow Example
13.13 to see how to change the timer length to 12-bits while still using ACLK. This example will again
toggle LED1 every time there is a timer overflow.

Example 13.13
Toggling LED1 on TB0 overflow using ACLK and a 12-bit counter configuration in C
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Next, let’s look at how to change the timer clock source. Follow Example 13.14 to see how to
change the timer clock to SMCLK (1 MHz) and toggle LED1 every time there is an overflow.

Example 13.14
Toggling LED1 on TB0 overflow using SMCLK in C
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Next, let’s look at how to slow down the overflow period by dividing the clock frequency. Follow
Example 13.15 to see how to divide the SMCLK source by 4 to produce a timer clock of 250 kHz. This
example will again toggle LED1 every time there is a timer overflow.

Example 13.15
Toggling LED1 on TB0 overflow using SMCLK and a divide-by-4 configuration in C
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Next, let’s look at programming timer compares in C. Follow Example 13.16 to see how to toggle
LED1 every 0.5 second using a CCR0 IRQ. Recall that to use CCR0 IRQs, the timer must be in UP
mode. Also note that CCR0 IRQs use a different vector address than the TB0IFG IRQ in the past
examples.

Example 13.16
Toggling LED1 using a CCR0 compare in C
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Next, let’s look at generating a PWM signal using two separate timer compares. Follow Examples
13.17 and 13.18 to see how to configure a PWM signal on the MSP430FR2355 in C. This example drives
LED1 with a 5% duty cycle signal with a period of 1 second. This provides a momentary flash on LED1.
The period of the PWM signal is dictated by a compare on CCR0, and the duty cycle is dictated by a
separate compare on CCR1.

Example 13.17
Flashing LED1 with a 5% duty cycle PWM using multiple compares in C (part 1)
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Example 13.18
Flashing LED1 with a 5% duty cycle PWM using multiple compares in C (part 2)
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CONCEPT CHECK

CC13.4 Programming the timer peripheral in C seems very similar to doing it in assembly due to
all of the statements to configure the register settings. Is there any benefit to doing it in C?

A) No. It is about the same.

B) Yes. Programming in C still allows the compiler/optimizer to choose the most
effective instructions to use to implement the specified functionality.

Summary

v The CCS design environment provides a
main.c template for us when creating a new
project. This provides statements to include
the msp43.h header file and stop the watch-
dog timer.

v When creating a new CCS project (with
main.c), the reset vector and stack pointer
are automatically initialized for us outside of
the main.c file.

v The literal names for the MSP430 registers
and bit fields can be used directly in C
statements.

v Block comments start with /* and end with */
and can span multiple lines.

v Line comments start with // and treat every-
thing until the end of the line as a comment.

v MCU programs should never end. This
means we need to insert looping structures
in our main program to avoid the program
ever reaching the return 0; statement.

v The CCS compiler contains optimization that
will remove code that doesn’t access the
outside word or other peripherals. If we
want to prevent optimization in order to
inspect the step-by-step operation of a pro-
gram, we need to turn it off.

v A while(1) loop can be used to create an
infinite loop in our main program.

v A for() loop is used to create a structure that
executes a fixed number of times. This can
be used to create a delay loop or to provide
an index for accessing other data structures.

v The if/else and switch/case statements pro-
vide a way to create conditionally executed
statements.

v C provides arithmetic instructions for addi-
tion, subtraction, increment, and decrement.

v Increment and decrement operations can be
coded with the shorthand Var++ or Var��.

v C provides bitwise logic operations for com-
plement (~), AND (&), OR (|), XOR (^), rotate
arithmetically left (<<), and rotate arithmet-
ically right (>>).

v Bitwise logic operations are useful for setting,
clearing, and toggling bits within variables or
registers.

v For bitwise logic operations where one of the
two arguments is also the destination of the
assignment, C provides a shorthand syntax
for AND (&¼), OR (|¼), and XOR (^¼).

v When using the digital I/O system of the
MSP430FR2355, all of the configuration
steps that were covered in assembly need
to also be done when using C. These steps
include altering all necessary configuration
registers including PxDIR, PxREN, and
PxOUT.

v When reading from an input port, we can
make a simple assignment from the port
input (PxIN) to an internal variable. We then
clear out all bits that are not being viewed
using a bitwise AND operation. This leaves
our internal variable either a 0 or not
0 according to the value of the input port bit.
This allows us to compare the variable to 0 in
subsequent if/else statements to make
assignments based on the input bit value.

v When using interrupts on the
MSP430FR2355, all of the steps covered in
assembly must be done when using
C. These include setting up the peripherals,
clearing the peripheral’s interrupt flag,
enabling the peripherals interrupt, asserting
the GIE bit in the status register, writing an
ISR, and initializing the vector table with the
starting address of the ISR.

v For maskable interrupts on the
MSP430FR2355, the __enable_
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interrupt() function will set the GIE bit in
the SR.

v A #pragma vector¼<VECTOR_LABEL>
directive is used to initialize the vector table
with the address of the routine that immedi-
ately follows it.

v The VECTOR_LABELs when coding in C on
the MSP430FR2355 are different from the
labels used in assembly.

v The __interrupt() function tells CCS
that the routine that follows is to be treated
as an ISR and to use reti to be used at its
end instead of ret.

v When programming timers on the
MSP430FR2355 in C, all of the steps to con-
figure the timers that were covered in assem-
bly must also be done in C.

v Programming peripherals in C is easier to
read due to the intuitive nature of the signal
assignments and the use of descriptive literal
names that come from the msp430.
h header file.

Exercise Problems

Section 13.1: Basics of C Programming
on the MSP430
13.1.1 What items are automatically inserted into the

main.c file when creating a new CCS project
for the MSP430FR2355?

13.1.2 What two steps are handled automatically by
the CCS environment for us, but not explicitly
inserted in the main.c filie?

13.1.3 How is a block comment coded in C?

13.1.4 How is a line comment coded in C?

13.1.5 What is the functionality of a while(1) loop?

13.1.6 Give the result of the following bitwise logic
operation:

Var |= 0b00000010;

13.1.7 Give the result of the following bitwise logic
operation:

Var &= 0b00000010;

13.1.8 Give the result of the following bitwise logic
operation:

Var &= ~0b00000010;

13.1.9 Give the result of the following bitwise logic
operation:

Var ^= 0b00000010;

13.1.10 Give the result of the following bitwise logic
operation:

Var = Var << 2;

13.1.11 Give the result of the following bitwise logic
operation:

Var = Var >> 3;

Section 13.2: Digital I/O in C
13.2.1 What does the following bitwise logic operation

do regarding the digital I/O system on the
MSP430FR2355?

P2DIR |= BIT6;

13.2.2 What does the following bitwise logic operation
do regarding the digital I/O system on the
MSP430FR2355?

P2DIR &= ~BIT6;

13.2.3 What does the following bitwise logic operation
do regarding the digital I/O system on the
MSP430FR2355?

P2REN |= BIT6;

13.2.4 What is the polarity of the pull-up/down resistor
that results from the following bitwise logic
operations on the MSP430FR2355?

P2REN |= BIT6;
P2OUT |= BIT6;

13.2.5 What is the polarity of the pull-up/down resistor
that results from the following bitwise logic
operations on the MSP430FR2355?

P2REN |= BIT6;
P2OUT &= ~BIT6;

Section 13.3: Interrupts in C
13.3.1 What is the vector label that we need to use

when initializing the vector address in C for a
port 2 interrupt?

13.3.2 What is the vector label that we need to use
when initializing the vector address in C for a
port 3 interrupt?

13.3.3 What does the __enable_interrupt()
function do?

13.3.4 What does the #pragma
vector¼<VECTOR_LABEL> do?

13.3.5 What does the __interrupt() function do?

Section 13.4: Timers in C
13.4.1 What does the following bitwise logic operation

do regarding the timer system on the
MSP430FR2355?

TB0CTL |= CNTL_2;
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13.4.2 What does the following bitwise logic operation
do regarding the timer system on the
MSP430FR2355?

TB0CTL |= ID_2;

13.4.3 What is the vector label that we need to use
when initializing the vector table in C for a TB1
overflow (TB1IFG) interrupt?

13.4.4 What is the vector label that we need to use
when initializing the vector table in C for a TB2
capture on CCR0?

13.4.5 What is the vector label that we need to use
when initializing the vector table in C for a TB3
capture on CCR1?

326 • Chapter 13: Switching to the C Language



Chapter 14: Serial Communication in C
This chapter looks at the serial communication capability of the MSP430 [1–3,12]. Serial communi-

cation uses a single wire to send information between a transmitter (Tx) and a receiver (Rx) as a
sequence of bits. This is the opposite of how we can send information as a full word using the MCU
ports, which is considered parallel communication. Serial communication allows information to be
transmitted using less pins compared to parallel communication, but at a slower overall information
transmission rate due to only sending one bit at a time as opposed to a full word. The MSP430 contains
dedicated peri/pherals to handle serial communication called the enhanced universal serial communica-
tion interfaces (eUSCI). The MSP430FR2355 contains four separate eUSCI peripherals called
eUSCI_A0, eUSCI_A1, eUSCI_B0, and eUSCI_B1. The MSP430FR2355 supports three serial commu-
nication modes including: (1) universal asynchronous receiver/transmitter (UART); (2) serial peripheral
interface (SPI); and (3) inter-integrated circuit (I2C) protocol. The eUSCI_A0 and eUSCI_A1 peripherals
can be configured to support either UART or SPI. The eUSCI_B0 and eUSCI_B1 peripherals can be
configured to support either SPI or I2C. This chapter gives an overview of the UART, SPI, and I2C
protocols and presents how to use these communication modes on the eUSCIs within the
MSP430FR2355 in C.

Learning Outcomes—After completing this chapter, you will be able to:

14.1 Design programs in C that use the MSP430FR2355’s UARTcommunication peripheral.
14.2 Design programs in C that use the MSP430FR2355’s SPI communication peripheral.
14.3 Design programs in C that use the MSP430FR2355’s I2C communication peripheral.

14.1 Universal Asynchronous Receiver/Transmitter (UART)

14.1.1 The UART Standard

The universal asynchronous receiver/transmitter is an approach to serial communication between
two devices in which neither device shares a common clock. This approach saves pins on each device
by only using lines for the data; however, since a clock is not shared, a UART requires an approach to
ensure that bits are not lost in the transmission due to the asynchronous nature of the communication.
Thus, a UART has a predefined protocol for how data is framed, how data packets start and stop, and
how the receiver oversamples the incoming data to recover the information sent. A UARTwas one of the
most popular communication standards in early computers for applications that required cables in which
cost was an issue and the least number of wires was desired. Examples of early UARTapplications were
computer mice, keyboards, and printers.

The first step in setting up a UART is to decide on a common data rate between the Tx and Rx. In a
UART, this is called a baud rate (BR). The baud rate is the fastest rate at which the data line changes
states. On the MSP430, the only two logic states allowed are HIGH and LOW. This means that the baud
rate also represents the fastest rate that a bit, or symbol, can be transmitted. The baud rate and bit period
(TB) are related by BR ¼ 1/TB. The baud rate must be manually set in both the Tx and Rx prior to data
transmission. A UART uses a baud rate that comes from a list of commonly accepted values. These
typically range from 9600 to 115,200 baud. The maximum rate of a UARTstems from its asynchronous
nature as it becomes more and more difficult for the receiver to recover the transmitted data as the rates
get higher and the timing differences between each device’s own clock becomes more noticeable.
Figure 14.1 gives an overview of the baud rate and bit period relationship in a UART.
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When two devices are connected together to transfer information, it is called a link. A UART can
have different physical link configurations. A simplex link provides unidirectional data communication
between a Tx on one device and an Rx on a second device using a single wire. A full-duplex link provides
bidirectional communication between Tx/Rx pairs on both devices using two wires. This allows informa-
tion to flow between the devices at the same time but requires two wires. A half-duplex link also contains
Tx/Rx pairs on both devices but only uses a single wire. This reduces the number of wires in the physical
link but requires that the two devices share the wire and cannot transmit at the same time. A half-duplex
link requires additional handshaking steps to agree upon who is going to transmit at any given time.
Figure 14.2 gives an overview of the possible link configurations. Note that while not shown, the Tx and
Rx must share the same ground.

Fig. 14.1
UART baud rate

Fig. 14.2
Simplex vs. duplex link configurations
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Framing is the term used to describe how the bits are arranged in the UART serial bit sequence.
When a UART link is not transmitting, it is held at a logic HIGH. This idle logic level stems from early
systems in which they wanted a way to make sure that the transmitting link was still operational. Having
the Tx drive a HIGH while not transmitting tells the Rx that it is still powered on. To start a data
transmission, the Tx drives the line LOW and holds it there for one TB. This initial symbol is called the
start bit. After that, the data word is transmitted bit by bit, typically starting with the LSB. After the bits
have been transmitted, the Tx drives the line HIGH for one TB to represent the end of the sequence. This
last symbol is called the stop bit. Figure 14.3 shows the framing for a typical 8-bit UART transmission.

There are many different framing variations beyond what is shown in Fig. 14.3. The most common
options that are configurable on the MSP430 are swapping the order in which the bits are sent (i.e.,
sending MSB first, LSB last), changing the data size between 7 bits and 8 bits, adding an address bit
(AD), adding a parity bit (PA), and adding a second stop bit. These framing options are shown in
Fig. 14.4.

Fig. 14.3
UART framing

Fig. 14.4
UART framing options on the MSP430
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When using a transmit address, two frames are sent, one for data and one for address. The AD bit
signifies whether the next frame is the address or data. The addition of a second stop bit can be used to
provide extra time between packets when running at higher baud rates in order to make the link more
reliable.

The parity bit is used to detect transmission errors. There are two types of parity, even and odd. In
even parity, the transmitter counts the number of 1’s in the data word, and if the count is odd, it asserts
the parity bit. This results in the total number of bits that are 1 between the data word and parity bit being
even. The receiver can count the number of bits that were received, and if the sum is not an even
number, it knows the frame was corrupted and can request the data to be sent again. In odd parity, this
logic is reversed. The transmitter counts the number of 1’s in the data word, and if the count is even, it
asserts the parity bit. This results in the total number of bits that are 1’s between the data word and parity
bit being odd.

In a UART, the Rx can determine the incoming data without a synchronous clock by oversampling
the data frame. The term sample refers to the rate at which data is stored by the receiver. In serial
communication, a shift register based on D-flip-flops is used on both the Tx and Rx sides. The D-flip-flops
in the Tx shift register are clocked at the baud rate frequency. This results in a new symbol being
transmitted every Tx clock period, or TB. The D-flip-flops in the Rx shift register are clocked at a rate that
is higher than the Tx baud rate. The most common Rx oversampling ratio is 16� of the Tx clock. The Rx
contains a counter that is also clocked off of the oversampling clock that counts the number of Rx clock
cycles from the time a start bit is observed. The Rx knows that each bit period of the transmitted data
frame is approximately 16 cycles of the Rx clock. This means that the start bit will take 16 cycles of the Rx
clock, and then 8 cycles later, and the middle of bit 0 will be present in the shift register. Thereafter, every
16 Rx clock cycles will result in the center of the next bit in the frame being present in the shift register.
After 136 Rx clock cycles, the receiver has sampled the entire data frame, and the shift register values
can be transferred to an internal register and the sampling is complete. Figure 14.5 shows a graphical
depiction of this sampling scheme.
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Fig. 14.5
UARTclocking scheme (16� oversampling example)
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The drawback of this approach is that the clock frequency used to generate the baud rate on the Tx
will never be exactly the same as the clock frequency used to generate the baud rate oversampling ratio
on the Rx. This error results in the possibility of the last bit of the frame being shifted either too far left or
right of its expected position when the sampling is complete and the received data that is transferred to
the Rx buffer being incorrect. This is the reason that a stop bit is necessary. The stop bit allows the
receiver to catch up and then start over its sampling upon a new start bit. The clock error between the Tx
and Rx is inherent in asynchronous communication and is a limiting factor in how fast the serial
communication link can run.

Everything that has been covered about the UARTassumes arbitrary logic levels of HIGH and LOW.
When logic levels are assigned to the UART logic values, the system becomes a communication
standard. A standard allows separate devices to communicate because both the logic levels and packet
structure are known. The term transistor-to-transistor logic (TTL) is used to describe a UART that
transmits a HIGH as the power supply (VCC) of the device and a LOW as the GND of the device.
Typically, we state the VCC value of the device when we describe the standard (i.e., +3.4v TTL or +5v
TTL). The MSP430FR2355 uses +3.4v TTL. The other most common UART standard is called the
recommended standard 232 (RS-232). In RS-232, a logic HIGH is represented as a voltage between
�3v and�15v, and a logic LOW is represented as a voltage between +3 and +15v. These voltage ranges
in RS-232 effectively invert the entire data frame. RS-232 standards are implemented by placing a
transceiver chip on the UART lines of the MCU that translates the TTL levels to RS-232.

The MSP430FR2355 contains two eUSCIs that support UART. These are eUSCI_A0 and
eUSCI_A1. These two eUSCI peripherals are configurable to either support UART or SPI. Each
eUSCI has Tx and Rx signals that share pins with ports on the MCU. The eUSCI_A0 Tx/Rx pins share
with port 1, bits 7 and 6, respectively. The eUSCI_A1 Tx/Rx pins share with port 4, bits 3 and 2, respec-
tively. Figure 14.6 shows the location of the two UARTs on the MSP430FR2355 LaunchPad™ board.

Fig. 14.6
UART pins on the MSP430FR2355
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14.1.2 UART Transmit on the MSP430FR2355

Let’s start learning about UARTs by looking at the Tx capabilities of the MSP430FR2355. Recall that
the MSP430FR2355 contains two eUSCIs that support UARTs, eUSCI_A0 and eUSCI_A1. These two
peripherals are completely separate from each other and can support two independent UART links.
Figure 14.7 shows a general block diagram of the UART Tx component of the eUSCI_Ax peripherals on
the MSP430FR2355.

The basic concept of operation of the UART system is to first configure its baud rate and frame
characteristics. We then store the data to be transmitted into a Tx buffer register, and a shift register will
automatically send the data out over the Tx pin in a serial pattern. The UARTcan also produce a variety
of interrupts such as data received, transmit complete, and many others used for detecting transmission
errors. The UARTs are configured using a variety of registers. We will only cover the registers necessary
to configure a basic UART. To see the more advanced UART features, refer to the MSP430 user’s guide.
More complex features are described in the MSP430 user’s guide. The complete list of UART configu-
ration registers is as follows:

Fig. 14.7
UART Tx general block diagram of the eUSCI_Ax peripheral on the MSP430FR2355
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• eUSCI_Ax control word 0 (UCAxCTLW0)

• eUSCI_Ax control word 1 (UCAxCTLW1)

• eUSCI_Ax baud rate control word (UCAxBRW)

• eUSCI_Ax modulation control word (UCAxMCTLW)

• eUSCI_Ax status (UCAxSTATW)

• eUSCI_Ax receive buffer (UCAxRXBUF)

• eUSCI_Ax transmit buffer (UCAxTXBUF)

• eUSCI_Ax auto baud rate control (UCAxABCTL)

• eUSCI_Ax IrDA control (UCAxIRCTL)

• eUSCI_Ax interrupt enable (UCAxIE)

• eUSCI_Ax interrupt flag (UCAxIFG)

• eUSCI_Ax interrupt vector (UCAxIV)

When configuring the UART peripheral, the recommended order of steps from the MSP430 user’s
guide is:

1. Set the UCSWRST bit in the UCAxCTLW0 configuration register to put the eUSCI_Ax periph-
eral into reset. Note that the default value for UCSWRST ¼ 1 on system power-on or system
reset, so the system is initially in software reset.

2. Initialize all eUSCI_Ax configuration registers.
3. Configure ports.
4. Clear UCSWRST to take the eUSCI_Ax peripheral out of reset.
5. Enable interrupts (optional) using the UCRXIE or UCTXIE bits in the UCAxIE configuration

register.

To begin, we want to hold the eUSCI_Ax in reset while we configure it in order to avoid erroneous
data from being transmitted. The eUSCI_Ax has a software reset that is enabled using the UCSWRST bit
in the eUSCI_Ax control word 0 (UCAxCTLW0) register. Upon reset, UCSWRST ¼ 1, so eUSCI_Ax is in
software reset by default; however, it is good practice to explicitly set this bit in order to ensure the system
is disabled. Figure 14.8 gives the details of UCAxCTLW0 register where the UCSWRST bit resides.
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The next configuration step is selecting the clock for the eUSCI_Ax peripheral (i.e., BRCLK). This is
done using the UCSSELx bits. On the MSP430FR2355, the default clock source is the external
UCAxCLK pin on the MCU. We are given the choice of selecting either ACLK (UCSSELx ¼ 01) or
SMCLK (UCSSELx ¼ 10 or 11) as internal clock sources for the eUSCI_Ax. On the MSP430FR2355
LaunchPad™ board, we will always use either ACLK or SMCLK for the source.

The next critical setting for the UART is its baud rate. The eUSCI_Ax peripheral has a baud rate
generation circuit that can produce standard baud rates from nonstandard clock sources such as
SMCLK and ACLK. The baud rate is set using two configuration registers, the eUSCI_Ax baud rate
control word (UCAxBRW), and eUSCI_Axmodulation control word (UCAxMCTLW) registers. Figure 14.9
shows the details of UCAxBRW. Figure 14.10 shows the details of UCAxMCTLW.

Fig. 14.8
eUSCI_Ax control word register 0 (UCAxCTLW0): UART mode
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The MSP430 baud rate generator has two modes of operation: low frequency baud rate generation
and oversampling baud rate generation. The low frequency baud rate mode is used for baud rates that
are less than or equal to 1/3 of BRCLK while the oversampling baud rate generation is used for higher
ratios. The UCSO16 bit in the UCAxMCTLW register controls the modulation mode with UCSO16 ¼ 0
being for low frequency (default) and UCSO16 ¼ 1 being for oversampling mode.

In low frequency mode (UCSO16¼ 0), the prescaler sets the initial division of BRCLK to get close to
the desired baud rate, and then the modulation stages are used to eliminate the rest of the timing error.
The first step in configuring the low frequency baud rate generator is to determine the prescaler value to
be placed into UCAxBRW. In low power mode, the prescaler value sets the number of times the source
clock (BRCLK) will be divided down to get close to the desired baud rate. The UCAxBRW register holds

Fig. 14.9
eUSCI_Ax baud rate control word (UCAxBRW) register

Fig. 14.10
eUSCI_Ax modulation control word (UCAxMCTLW) register
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the integer portion of the quotient of the division of the eUSCI_Ax clock source (fBRCLK) and the desired
baud rate (N¼ fBRCLK/baud_rate). This division often results in a non-integer value for N, which can lead
to significant timing error and prevent the receiver from successfully recovering the transmitted data. To
illustrate this timing error, consider the error calculations in Example 14.1 in which a desired rate of
115,200 baud is generated using only an integer prescaler division.

Example 14.1
Calculating the error of eUSCI prescaler division
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In order to compensate for the timing error resulting from the integer clock division in the prescaler,
modulation stages are included on the MSP430. The MSP430’s modulation circuits dynamically add and
subtract BRCLK periods to the baud rate clock that drives the shift register. By adding small amounts of
time from the BRCLK clock period to the baud rate clock, the timing error can be reduced. In low
frequency mode, the baud rate generator uses the second modulation stage to create the desired
baud rate. The second modulation stage is configured using the UCBRSx bits within the UCAxMCTLW
register.

In oversampling baud rate mode (UCSO16¼ 1), the prescaler register UCAxBRW holds the integer
portion of N divided by 16 (i.e., INT(N/16) where N ¼ (fBRCLK/baud_rate)). Again, this division often
results in a non-integer value for N/16, which can lead to timing error. In oversampling baud rate mode,
both the first and second modulation stages are used to reduce this timing error. The first modulation
stage is configured using the UCBRFx bits within the UCAxMCTLW register.

To simplify the settings for the first and second modulation stages, the MSP430 user’s guide
provides a table of settings that can be used for UCBRx, UCBRFx, and UCBRSx to achieve common
baud rates based on typical BRCLK frequencies. On the MSP430FR2355 LaunchPad™ board, the
BRCLK can only take on values of 32.768 kHz (ACLK) or 1 MHz (SMCLK) internally, so only a subset of
the values provided in the user’s guide are applicable to the LaunchPad™ board. Table 14.1 gives the
relevant prescaler and modulation settings from the MSP430 user’s guide that can be used on the
LaunchPad™ board to achieve common baud rates.

Many of the UART framing options are also configured in UCAxCTLW0; however, many of the
default settings for UCAxCTLW0 upon reset can be used to configure a typical UART frame. The
UCSYNCvaluedictateswhether theeUSCI_Axperipheral is to beusedasaUART (UCSYNC¼0¼asyn-
chronous) or as a SPI (UCSYNC¼ 1¼ synchronous). Since the default for UCSYNC¼ 0 upon reset, the
eUSCI_Ax peripherals are in UARTmode automatically. Additionally, the UCMODEx bits dictate whether
the UART is in regular, in auto baud rate detect mode, or in one of two SPI modes. Since the default for
UCMODEx ¼ 00, upon reset, the eUSCI_Ax peripherals are also in regular UART mode automatically.
Also, the reset values for UCTXBRK, UCTXADDR, UCDORM, UCBRKIE, UCRXEIE, UCSPB, UC7BIT,
UCMSB, UCPAR, and UCPEN are all 0. If these settings are left at their default values, then the
eUSCI_Ax peripheral comes up configured as a UART with typical frame settings.

At this point, we have covered all of the eUSCI_Ax settings to configure the UART. The next step is
to configure the ports on the MSP430FR2355 to use the UART Tx and Rx functionality instead of the

Table 14.1
Prescaler and modulation settings to configure the UART baud rate
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default digital I/O port functions. This is accomplished using the PxSEL1 and PxSEL0 configuration
registers. These registers were mentioned in Table 9.1 when covering the digital I/O system. Recall that
the default setting for the pins on the MSP430FR2355 is always the ports. Configuring the pin as a UART
instead of a port will be the first time we have had to manually configure the PxSEL1 and PxSEL0
registers. Note that the function options for each pin on the MSP430FR2355 is unique, so there is not a
consistent pattern to the mappings. The exhaustive list of function mappings is only given in the
MSP430FR2355 device specific data sheet. Table 14.2 provides the detailed eUSCI mappings for the
MSP430FR2355 MCU showing only the pins that have serial communication capability.

At this point, the UARTand the ports have been configured. The next step is to take the eUSCI_Ax
peripheral out of software reset by clearing the UCSWRST bit in the UCAxCTLW0 register.

Once taken out of software reset, the eUSCI_Ax Tx module is enabled and will wait in an idle state
until information is ready to be transmitted. While in the idle state, the baud rate generator is ready but not
clocked nor producing any clocks. A Tx is initiated by writing a byte to the eUSCI_Ax Transmit Buffer
(UCAxTXBUF). When this occurs, the data in UCAxTXBUF is moved into the Tx shift register and the
baud rate generator begins producing clocks. The UCTXIFG flag provides the status of the transmission.
When UCTXIFG ¼ 0, data is being shifted out and new data should not be written to the Tx buffer. When

Table 14.2
eUSCI pin mappings for the MSP430FR2355 MCU
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UCTXIFG ¼ 1, new data can be written to the Tx buffer. Figure 14.11 gives the details of the
UCAxTXBUF register.

Let’s start programming the UARTon the LaunchPad™ board by first looking at sending out an 8-bit
value that is continually stored to the transmit buffer. Follow the design in Examples 14.2, 14.3, and 14.4
to gain experience with using the MSP430FR2355 UART Tx.

Fig. 14.11
eUSCI_Ax transmit buffer (UCAxTXBUF) register

Example 14.2
Transmitting a byte over UARTat 115200 baud (part 1)
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Example 14.3
Transmitting a byte over UARTat 115200 baud (part 2)
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Now let’s look at changing the baud rate from 115,200 to 9600 baud. Follow the design in Examples
14.5, 14.6, and 14.7 to gain an understanding of how to change the baud rate of the UART on the
MSP430FR2355 MCU.

Example 14.4
Transmitting a byte over UARTat 115200 baud (part 3)

342 • Chapter 14: Serial Communication in C



Example 14.5
Transmitting a byte over UARTat 9600 baud (part 1)

Example 14.6
Transmitting a byte over UARTat 9600 baud (part 2)



Now let’s begin using a terminal window from a computer to interface with the UART link on the
MSP430FR2355. A terminal is a way to communicate with a device using standard I/O on a computer
(i.e., a keyboard and mouse). A terminal uses the UART interface to send and receive bytes through a
serial port on a computer (i.e., USB). The CCS design environment contains a built-in terminal feature
that can be used to view data coming from the MSP430FR2355 LaunchPad™ board and also send
information to the MCU board. The LaunchPad™ board contains a debug chip that handles downloading
programs onto the MCU in addition to debugging programs. This chip also contains functionality to make
the LaunchPad™ board appear as a standard “com” port to a computer. The com port will appear as the
“Application UART1 (COMx)” when the LaunchPad™ board is plugged in. When setting up a terminal
connection to the MSP430FR2355 LaunchPad™ board, the com port number of the Application UART1
is used as the connection ID. Figure 14.12 shows the connection path for the Application UART1 on the
MSP430FR2355 LaunchPad™ board.

Example 14.7
Transmitting a byte over UARTat 9600 baud (part 3)
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By default, terminal windows interface with the standard I/O of the computer using a coding scheme
called ASCII. ASCII stands for the American Standard Code for Information Interchange. In ASCII, every
character in the American written language is assigned a unique 8-bit code. This coding approach allows
each button press on a computer’s keyboard to result in an 8-bit code being generated and understood
by the computer’s CPU. When writing a program, the data type “char” can be used to declare variables
and store characters in ASCII. In C, when a statement such as char Var1 ¼ ‘A’; is used, it will assign
the ASCII code for the symbol “A” into the 8-bit variable labeled “Var1.”Using the char datatype allows us
to create programs that can send and receive ASCII characters using a terminal. This gives us the ability
to send text to and from the MSP430FR2355 using the keyboard of a computer. Table 14.3 gives the
definition of the 8-bit ASCII codes.

Fig. 14.12
Application UART1 (COMx) port details on the MSP430FR2355™
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Now let’s look at defining the values to send over the UART using the type char in order to use the
ASCII standard. We will insert a value of type char into the Tx buffer to be sent to the computer. We will
then observe the bitstream with an oscilloscope to verify it is indeed the correct ASCII code per
Table 14.3. We will then observe the ASCII symbol arriving using a terminal window built into CCS.
Follow the design in Examples 14.8, 14.9, 14.10, and 14.11 to see how to use ASCII and a terminal
window when transmitting with a UART.

Table 14.3
American Standard Code for Information Interchange (ASCII)
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Example 14.8
Transmitting a character over UART (part 1)

Example 14.9
Transmitting a character over UART (part 2)



Example 14.10
Transmitting a character over UART (part 3)
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Now let’s look at sending a string of characters using a for() loop. We will create a string that says
“Hello World” and continually sends it over the UART Tx to be observed with a terminal. We will need to
insert delay between transmits of each character in the string to avoid overwriting the Tx buffer before the
prior character has been shifted out. Follow the design in Examples 14.12, 14.13, and 14.14 to see how
to send strings using the MSP430FR2355 UART.

Example 14.11
Transmitting a character over UART (part 4)
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Example 14.13
Transmitting a string over UART (part 2)

Example 14.12
Transmitting a string over UART (part 1)



One of the drawbacks of the prior examples was that delay loops were needed to space out when
data was put into the Tx buffer. This was to avoid overwriting the shift register with a new character before
the last byte was fully shifted out. Inserting manual delay to control the timing of a peripheral is an
inefficient use of the CPU and an ideal application for interrupts. MSP430 provides a variety of interrupts
for the eUSCI_Ax peripheral, including two dedicated for UART transmission. The first Tx IRQ is called
the transmit interrupt (UCTXIFG). The UCTXIFG flag is cleared when the Tx buffer data is written to. The
UCTXIFG is set when the Tx buffer data has been moved to the shift register and the buffer is empty.
UCTXIFG only indicates that the Tx buffer is empty, not that the last character has been fully shifted out.
The second Tx IRQ is called the transmit complete interrupt (UCTXCPTIFG). The UCTXCPTIFG is set
when the entire byte in the Tx shift register has been shifted out and it is ready for a new character. The
two Tx IRQs are enabled with the UCTXIE and UCTXCPTIE bits within the UCAxIE register. The flags for
the two Tx IRQs are called UCTXIFG and UCTXCPTIFG and are held in the UCAxIFG register. The
eUSCI_Ax peripheral only contains one interrupt vector address for all of the interrupts within the system.
In order to help identify which interrupt flag has been asserted and should be serviced first, a prioritized
set of ID numbers is provided in the UCAxIV register. Figures 14.13, 14.14, and 14.15 give the details of
the UCAxIE, UCAxIFG, and UCAxIV registers, respectively.

Example 14.14
Transmitting a string over UART (part 3)
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Fig. 14.14
eUSCI_Ax interrupt flag (UCAxIFG) register

Fig. 14.15
eUSCI_Ax interrupt vector (UCAxIV) register

Fig. 14.13
eUSCI_Ax interrupt enable (UCAxIE) register



Let’s now look at an example of using a UART Tx IRQ in order to track the status of the shift register
when sending a string of characters. Follow the design in Examples 14.15, 14.16, and 14.17 to gain
experience using the eUSCI_A1 Tx IRQs. In this example, we will send a string of characters (i.e., “Hello
World”). We will begin the transmission with a button press on S1 of the LaunchPad™ board. When the
S1 button is pressed, it will trigger a port interrupt. The S1 port interrupt will set the initial character
position in the string that is to be sent (i.e., the index of the string). It will then enable the UCTXCPTIFG
interrupt and write the first character to the Tx buffer. After this initial character is put into the Tx buffer
with the UCTXCPTIFG IRQ enabled, the system will shift out the character and then assert the
UCTXCPTIFG flag when complete. Once UCTXCPTIFG is asserted, it will trigger an eUSCI_A1
interrupt. Within the eUSCI_A1 service routine, we will move the current index within the string to the
next location and put the next character into the Tx buffer. We will also insert functionality in the
eUSCI_A1 ISR to track when the entire string has been sent and the UCTXCPTIFG interrupt can be
disabled.

Example 14.15
Controlling UART transmission with interrupts (part 1)
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Example 14.16
Controlling UART transmission with interrupts (part 2)
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14.1.3 UART Receive on the MSP430FR2355

Now let’s look at the UART Rx functionality of the MSP430FR2355. The Rx system is very similar to
the Tx system in that it contains a shift register that receives the serial data. Once the frame has been
received, it is put into the Rx receiver buffer (UCAxRXBUF) in order to convert the information back to a
parallel format. The same clock generator is used for both the Tx and Rx circuits and is configured using
the UCAxBRW and UCAxMCTLW registers. The Rx baud rate generator is configured with the desired
baud rate, and the system automatically handles creating the oversampling clock for the Rx shift register.
The Rx system also contains a state machine that monitors the incoming data and creates status flags
that can be used to generate interrupts. Figure 14.16 gives a general block diagram of the UART Rx
system within the eUSCI_Ax peripheral.

Example 14.17
Controlling UART transmission with interrupts (part 3)
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Figure 14.17 gives the details of the uUSCI_Ax receive buffer (UCAxRXBUF).

Fig. 14.16
UART Rx general block diagram of the eUSCI_Ax peripheral on the MSP430FR2355

Fig. 14.17
eUSCI_Ax receive buffer (UCAxRXBUF) register
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The eUSCI_Ax peripheral provides two interrupts to indicate the status of incoming characters. The
start bit interrupt (UCSTTIFG) will trigger when the system sees a HIGH-to-LOW transition on the Rx pin
indicating a new frame is being received. The receive interrupt (UCRXIFG) will trigger when a new
character has been received and the data is available in the Rx buffer. The UCRXIFG will be cleared
when the Rx buffer is read. This means that we don’t need to explicitly clear the IRQ flag for the receive
interrupt as we do with other peripherals. The two Rx IRQs are enabled with the UCRXIE and UCSTTIE
bits within the UCAxIE register. The flags for the two Rx IRQs are called UCRXIFG and UCSTTIFG and
are held in the UCAxIFG register. The UCAxIV register can be used to indicate the highest priority event
when multiple IRQs are enabled since the eUSCI_Ax only has one interrupt vector.

Follow the design in Examples 14.18 and 14.19 to see how to use the eUSCI_A1 UART receive
functionality. Note that the eUSCI_A1 Rx pin is connected to the Application UART1 port. In this example
the program will toggle LED1 on the LaunchPad™ board anytime the character “t” is received.
Characters will be sent to the LaunchPad™ board using the terminal within CCS.

Example 14.18
Receiving characters on the eUSCI_A1 UART (part 1)
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Example 14.19
Receiving characters on the eUSCI_A1 UART (part 2)
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CONCEPT CHECK

CC14.1 The UART receiver oversampling scheme seems like a very complicated way to recover
the transmitted signal. Why not just add another wire and send a clock?

A) The original intent of the UART was to implement a serial communication
scheme with the least amount of wires. A half-duplex UARTcan be
implemented with just one wire. Adding an extra pin to a computer system
today may not add much cost, but the cost of cables in long distance
communication links can quickly become cost prohibitive.

B) If we added a clock, UART would be too similar to SPI and confuse people.

C) If we added a clock, we wouldn’t be able to use the term “baud”.

D) If we added a clock, we wouldn’t be able to run at the slower speeds that
UARTsupports.

14.2 Serial Peripheral Interface (SPI)

14.2.1 The SPI Protocol

The SPI protocol transmits serial data between devices using a shared clock and dedicated lines for
data out and data in. This protocol uses more pins than a UART (three at a minimum) but can achieve
higher data rates due to the synchronous nature of the link. A SPI system uses the concept of a master
and a slave when setting up the link. The master is the device that generates the clock that all devices
use to transfer information. Themaster clock is called the serial clock (SCLK). The data lines are denoted
slave in, master out (SIMO) and slave out, master in (SOMI). Some devices exchange the order of the
letters and instead use MOSI and MISO. The MSP430 documentation uses SIMO and SOMI, so this
book will also use that notation. Figure 14.18 shows a typical SPI master/slave configuration in its
simplest form known as three-wire mode.

The default SPI data frame is 8 bits long with the LSB being sent first. The SPI Tx and Rx devices
use shift registers to transfer the serial bit stream. When transmitting, the data is shifted out on the rising
edge of SCLK. When receiving, the data is shifted in on the falling edge of SCLK. When not transmitting,
SCLK is held in an idle state. This allows the clock edge used by the receiver to be centered within the bit
period of the data bits. Figure 14.19 shows the clocking scheme for a SPI system. The MSP430FR2355
also provides framing options such as MSB first, the clocking polarity, and 7- vs. 8-bit size in addition to
clocking options such as the edge polarity and the state when idle.

Fig. 14.18
Single master/slave SPI configuration (three-wire mode)
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When multiple slaves are used in the system, a slave transmit enable (STE) line can be generated
by the master in order to dictate which slave is being communicated with. This is also called the slave
select (SS) in some SPI devices. There are different topologies that can be used when communicating
with multiple slaves. The first is a bus configuration in which the SIMO and SOMI lines are all shared
between the master and slaves. Each slave is assigned its own STE. Only one slave is active at any
given time. Once more than one STE is needed, the MSP430FR2355 user’s guide recommends using
port pins to create dedicated STEs. The second configuration is called daisy-chained where devices are
wired to form a single, continuous data loop among all the SPI devices. In the daisy-chained configura-
tion, the master counts the number of clocks that have occurred in order to track where in the loop the
current data resides. Figure 14.20 shows SPI topologies that use STEs.

Fig. 14.19
SPI clocking scheme
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The MSP430FR2355 provides four SPI modules, one on each of the serial communication
peripherals (eUSCI_A0, eUSCI_A1, eUSCI_B0, and eUSCI_B1). The eUSCI_Ax peripherals provide
either UART or SPI while the eUSCI_Bx peripherals provide either I2C or SPI. The PxSEL1:PxSEL0
registers are used to select which serial peripheral drives the pins on the MSP430FR2355 MCU.
Figure 14.21 shows the location of the eUSCI_A0 and eUSCI_A1 SPI pins on the LaunchPad™ board.

Fig. 14.20
SPI topologies that use slave transfer enable (STE) lines
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Figure 14.22 shows the location of the eUSCI_B0 and eUSCI_B1 SPI pins on the LaunchPad™
board.

Fig. 14.21
eUSCI_Ax SPI pins on MSP430FR2355 LaunchPad™ board
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14.2.2 SPI Master Operation on the MSP430FR2355

Let’s start learning about the SPI protocol by looking at the transmit capabilities of the
MSP430FR2355’s eUSCI_Ax in master mode. Figure 14.23 shows a general block diagram of the
SPI Tx component of the eUSCI_Ax peripherals on the MSP430FR2355.

Fig. 14.22
eUSCI_Bx SPI pins on MSP430FR2355 LaunchPad™ board
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The basic concept of operation of the SPI system is that we first configure it to have the desired bit
rate and frame characteristics. Then we store the data to be transmitted into a Tx buffer, and a shift
register automatically sends the data out over the SIMO pin in a serial pattern. The master sends out
eight transitions on SCLK corresponding to each bit that was sent on SIMO. In three-pin mode, the STE
is not used. In four-pin master mode, the STE pin can be configured to be either an active high or low
output enable for the slaves. The SPI transmit system can also provide one interrupt called transmit
interrupt (UCTXIFG) that is used to indicate when the Tx buffer is empty. The SPI peripherals are
configured using a variety of registers that are shared with the UART (or I2C) peripheral. In SPI mode,
some of the bit fields within the registers take on different functionality. This is most obvious in the
UCAxCTLW0 register in which many of the UART settings aren’t applicable to the SPI protocol. The
complete list of SPI configuration registers is below.

• eUSCI_Ax control word 0 (UCAxCTLW0) – has different bit fields when in SPI mode.

• eUSCI_Ax bit rate control word (UCAxBRW) – same function as in UART mode.

• eUSCI_Ax status (UCAxSTATW) – has different bit fields when in SPI mode.

• eUSCI_Ax receive buffer (UCAxRXBUF) – same function as in UART mode.

• eUSCI_Ax transmit buffer (UCAxTXBUF) – same function as in UART mode.

• eUSCI_Ax interrupt enable (UCAxIE) – only has TXIE and RXIE fields.

• eUSCI_Ax interrupt flag (UCAxIFG) – only has TXIFG and RXIFG fields.

• eUSCI_Ax interrupt vector (UCAxIV) – only has codes for TXIFG and RXIFG IRQs.

Fig. 14.23
SPI Tx general block diagram of the eUSCI_Ax peripheral on the MSP430FR2355
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The recommended order of steps from the MSP430 user’s guide to set up the SPI peripheral is:

1. Set the UCSWRST bit in the UCAxCTLW0 configuration register to put the eUSCI_Ax periph-
eral into software reset.

2. Initialize all eUSCI_Ax configuration registers.
3. Configure ports.
4. Clear UCSWRST to take the eUSCI_Ax peripheral out of reset.
5. Enable interrupts (optional) in the UCAxIE configuration register (UCRXIE or UCTXIE).

14.2.2.1 Transmitting Data as the SPI Master

As with the UART, the first step in setting up the SPI peripheral is to put the system into software
reset to avoid erroneous data from being transmitted during setup. This is done by setting the UCSWRST
bit in the eUSCI_Ax control word 0 (UCAxCTLW0) register. Upon reset, UCSWRST¼ 1, so eUSCI_Ax is
in software reset by default; however, it is good practice to explicitly set this bit in order to ensure the
system is disabled. Figure 14.24 gives the details of the UCAxCTLW0 register where the UCSWRST
resides. This is the same register as is used to configure the UART; however, many of the fields are used
for different settings when configuring the peripheral as a SPI.

Fig. 14.24
eUSCI_Ax control word register 0 (UCAxCTLW0): SPI mode
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The next configuration step that is handled in the UCAxCTLW0 register is selecting the clock for the
eUSCI_Ax peripheral (i.e., BRCLK). This is done using the UCSSELx bits. On the MSP430FR2355, the
default clock source is the external UCAxCLK pin on the MCU. We are given the choice of selecting
either ACLK (UCSSELx ¼ 01) or SMCLK (UCSSELx ¼ 10 or 11) as internal clock sources for the
eUSCI_Ax. On the MSP430FR2355 LaunchPad™ board, we will always use either ACLK or SMCLK for
the source.

The next critical setting for the SPI is its bit rate. Setting the bit rate for SPI is much simpler than for a
UART due to its synchronous nature. The only setting that alters the rate of the clock is in the UCAxBRW
register. The value that is stored into UCAxBRW will divide the incoming clock source (i.e., BRCLK) to
produce the SCLK that will be used by the master and all slaves. If UCAxBRW is left at its default value of
x0000, the bit clock will simply be BRCLK. On the MSP430FR2355 the fastest clock available is
SMCLK¼1 MHz, which sets the fastest bit rate that the SPI system can achieve on this MCU. Using
the UCAxBRW register to divide down the BRCLK gives a nearly limitless number of bit rates that are
slower than 1 MHz. Note that the UCAxBRW register is the same register that is used in the UART baud
rate generation circuit as the prescaler/divider of the incoming clock. This register is used in the same
way for SPI as a clock prescaler/divider.

There are also two options for the way that data is clocked in the SPI system. The UCCKPH bit
dictates the relative phase between the data and SCLK when sending or receiving data. When
UCCKPH ¼ 0, data is changed on the first edge of SCLK and captured on the following edge (default).
When UCCKPH¼ 1, data is captured on the first edge of SCLK and changed on the following edge. The
UCCKPL bit dictates the polarity of the clock when inactive. Recall that when SCLK is not transmitting, it
remains at a constant logic level. If UCCKPL¼ 0, the inactive state is LOW (default). If UCCKPL¼ 1, the
inactive state is HIGH.

Just as with the UART interface, many of the SPI peripheral settings are configured in the
UCAxCTLW0 register. First, the UCSYNC bit sets the peripheral to either UART (UCSYNC ¼ 0 for
Asynchronous) or SPI (UCSYNC¼ 1 for Synchronous) mode. Next, the UCMST bit sets whether the SPI
peripheral is in master (UCMST ¼ 1) or slave (UCMST ¼ 0) mode. The framing options for the SPI data
transmission are also set in UCAxCTLW0, including sending MSB vs. LSB first (UCMSB) and
7-bit vs. 8-bit data length (UC7BIT). The UCMODEx bits dictate whether the peripheral is set up as a
three-wire SPI, four-wire SPI with active HIGH STE, four-wire SPI with active LOW STE, or as an I2C
(only for eUSCI_Bx). If the SPI system is set up to use STE, its functionality is further configured using
the UCSTEM bit. If UCSTEM ¼ 1 and four-wire mode is enabled, the STE bit is configured as an output
for use in master mode. If UCSTEM ¼ 0 and four-wire mode is enabled, the STE bit is configured as an
input for use in slave mode.

At this point, we have covered all of the eUSCI_Ax settings to configure the SPI system on
eUSCI_Ax. The next step is to configure the ports on the MSP430FR2355 to use the SPI SCLK,
SIMO, SOMI, and STE (optionally). Just as in the UART, this is done using the PxSEL1 and PxSEL0
configuration registers. The settings for these port configuration registers were given in Table 14.2 in
Sect. 14.1.2.

Now that the SPI ports have been configured, the next step is to take the eUSCI_Ax peripheral out of
software reset by clearing the UCSWRST bit in the UCAxCTLW0 register.
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Once taken out of software reset, the eUSCI_Ax SPI module is enabled and will wait in an idle state
until information is ready to be transmitted. While in the idle state, no SCLK is generated. ATx is initiated
by the master by writing a byte of data to the eUSCI_Ax Transmit Buffer (UCAxTXBUF). When this
occurs, the data in UCAxTXBUF is moved into the Tx shift register, and the bit rate generator produces
eight clocks to shift out the data over SIMO (when in 8-bit mode). The UCTXIFG flag provides the status
of the transmission. When UCTXIFG ¼ 0, data is being shifted out and new data should not be written to
the Tx buffer. When UCTXIFG¼ 1, new data can be written to the Tx buffer. The UCTXIFG flag resides in
the UCAxIFG register, just as in the UARTsetup.

Let’s start programming the SPI peripheral on the LaunchPad™ board by first looking at sending out
an 8-bit value that is continually stored to the transmit buffer separated by delay loops. Follow the design
in Examples 14.20, 14.21, 14.22, and 14.23 to gain experience using the MSP430FR2355 SPI transmit
in master mode.

Example 14.20
Transmitting a byte from a SPI master (part 1)
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Example 14.21
Transmitting a byte from a SPI master (part 2)
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Example 14.22
Transmitting a byte from a SPI master (part 3)
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Now let’s look at how we can send a packet of information across a SPI bus. Once we start sending
more than a single byte over SPI, we need to track whether the Tx buffer has finished sending the last
byte and is ready for more data. This can be accomplished using the transmit interrupt (TXIFG) within the
SPI system. Each time the Tx buffer is written to, it will clear the TXIFG flag. Each time the Tx buffer is
empty and is ready for more information, the TXIFG flag will be set. The TXIFG flag can be used to trigger
an interrupt if TXIE and global interrupts are enabled.

The TXIFG flag resides within the UCAxIFG register and is shown in Fig. 14.25. The TXIE bit resides
within the UCAxIE register and is shown in Fig. 14.26. Figure 14.27 shows the IRQ vector register
UCAxIV. Note that these three registers are the same as used in UARTmode, but with a reduced number
of fields corresponding to only two IRQs in the SPI system (UCTXIFG and UCRXIFG).

Example 14.23
Transmitting a byte from a SPI master (part 4)
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Fig. 14.25
eUSCI_Ax interrupt enable (UCAxIE) register: SPI mode

Fig. 14.26
eUSCI_Ax interrupt flag (UCAxIFG) register: SPI mode

Fig. 14.27
eUSCI_Ax interrupt vector (UCAxIV) register: SPI mode



Let’s do an example where we send a packet of four bytes out of a SPI master. We will start the
transmission upon a button press on S1. We will use a port interrupt to start the transmission when S1 is
pressed by placing the first byte of the packet into the Tx buffer. Once the first byte is transmitted, the
TXIFG flag will be asserted indicating that the buffer is ready for the next byte of information. We will use
this flag to trigger an eUSCI_A0 interrupt that will place the next byte of the packet into the Tx buffer. This
process will repeat as each byte in the packet is sent over SPI. We will require some logic within the SPI
service routine to check whether the entire packet has been sent and we are done. If all bytes in the
packet have been sent, we will disable the SPI transmission by clearing the TXIFG flag without loading
any new data into the Tx buffer. Follow Examples 14.24, 14.25, 14.26, 14.27, and 14.28 to gain
experience sending packets of information out of a SPI master.

Example 14.24
Transmitting a packet from a SPI master using a TXIFG interrupt (part 1)
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Example 14.25
Transmitting a packet from a SPI master using a TXIFG interrupt (part 2)

14.2 Serial Peripheral Interface (SPI) • 373



Example 14.26
Transmitting a packet from a SPI master using a TXIFG interrupt (part 3)
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Example 14.27
Transmitting a packet from a SPI master using a TXIFG interrupt (part 4)
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Now let’s look at generating an active LOW STE signal by the master for use as an enable for the
slave(s). To generate an STE, the UCMODEx bits in the UCAxCTLW0 register are used to put the
peripheral into four-pin SPI mode with an active LOW STE. Then the UCSTEM bit in the UCAxCTLW0
register configures the STE to be an output. Follow the design in Examples 14.29, 14.30, and 14.31 to
see how to generate an active LOW STE by the master.

Example 14.28
Transmitting a packet from a SPI master using a TXIFG interrupt (part 5)
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Example 14.29
Transmitting a packet from a SPI master with an active LOW STE (part 1)
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Example 14.30
Transmitting a packet from a SPI master with an active LOW STE (part 2)
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14.2.2.2 Receiving Data as the SPI Master

When configured as the master and receiving data on SOMI, the master still produces the SCLK
pulses to shift the data out of the slave and into the master. The data is received through an Rx shift
register. When all bits have been shifted in, the byte of data is moved into an RX buffer (UCAxRXBUF).
The Rx system tracks the incoming data and sets the RXIFG flag in the UCAxIFG register when new data
has arrived in the buffer. Interrupts can be generated by the RXIFG by enabling the RXIE bit in the
UCAxIE register. Figure 14.28 shows the concept for a SPI receiver.

Example 14.31
Transmitting a packet from a SPI master with an active LOW STE (part 3)
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Since the master generates SCLK, it must send the necessary clock pulses to the slave in order for
the slave to shift out its data back into the master Rx shift register. This is accomplished by writing a
dummy byte of any value to the Tx register on the master in order to force the system to generate eight
SCLK pulses.

Let’s look at an example of receiving data as a master. Since we want to do this example using only
the MSP430FR2355 LaunchPad™ board, we will simply connect the SIMO pin of eUSCI_A0 to the
SOMI pin of eUSCI_A0. This will allow us to send out a byte of data on SIMO and watch it arrive in the Rx
buffer eight clock cycles later. While this example is somewhat pointless, it does illustrate how a master
requests data from a slave by writing to the Tx buffer and then waiting for an RXIFG interrupt to indicate
that data is available in the Rx buffer. Follow the design in Examples 14.32, 14.33, 14.34, and 14.35 to
see how to receive data as a SPI master. In this design, the push-button switches S1 and S2 are used to
send different bytes of data (0� 10 and 0� 66) from the Tx to the Rx. When the Rx receives 0� 10, it will
toggle LED1. When the Rx receives 0 � 66, it will toggle LED2.

Fig. 14.28
SPI Rx general block diagram of the eUSCI_Ax peripheral on the MSP430FR2355
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Example 14.32
Receiving a byte as a SPI master (part 1)

14.2 Serial Peripheral Interface (SPI) • 381



Example 14.33
Receiving a byte as a SPI master (part 2)
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Example 14.34
Receiving a byte as a SPI master (part 3)
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14.2.3 SPI Slave Operation on the MSP430FR2355

14.2.3.1 Transmitting Data as a SPI Slave

When acting as a SPI slave, the device must be configured to match the system settings of the
master. These include the three-pin vs. four-pin mode, STE polarity, LSB vs. MSB first, 8-bit vs. 7-bit,
clock polarity, and clock phase. The device must also be put into slave mode using the UCMSTsetting.
The clock source and bit rate does not need to be configured since the SCLK will be sent by the master.
When the MCU sees UCMST¼ 0, it knows to use the SCLK being received instead of from its own clock
generator.

Example 14.35
Receiving a byte as a SPI master (part 4)
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Transmitting as a SPI slave consists of placing data into the Tx buffer and then waiting for the master
to send eight SCLK pulses to shift the data out. Once data is placed into the Tx buffer, the slave can
monitor the TXFLG to see when the data has been completely shifted out. Since the slave does not
control SCLK, it will not know when the data has been shifted out. As such, using a TXFLG interrupt to
indicate the data has been transmitted is recommended.

14.2.3.2 Receiving Data as a SPI Slave

When configured as a SPI slave, receiving data consists of waiting passively until data has been
shifted into the Rx buffer. Once a full frame has arrived, the RXFLG flag is asserted. As the slave, this is
the only method that exists to indicate that data has arrived. As such, using an RXFLG interrupt to
indicate the receipt of data is the most efficient way to configure the SPI receiver.

CONCEPT CHECK

CC14.2 Is there such thing as “half-duplex” in a SPI link?

A) Yes. You just need to connect the SIMO and SOMI pins together and take
turns driving the bus.

B) No. SPI uses dedicated signals to send data in specific directions. SIMO
always transfers data from the master and SOMI always transfers data from
the slave.

14.3 Inter-integrated Circuit (I2C) Bus

14.3.1 The I2C Protocol

The inter-integrated circuit (I2C¼I2C, pronounced “I-squared-C”) standard is a serial interface
implemented with a two-wire link that can support multiple masters and multiple slaves. An I2C bus
contains a clock line (SCL ¼ serial clock) and a data line (SDA ¼ serial data). An I2C link is always half-
duplex, meaning that all devices share the data line with only one device transmitting at any given time.

The I2C bus supports multiple drivers on the same signal line by using the concept of an open-drain
output stage. In this type of driver, the output consists of an n-type MOSFET (metal oxide semiconductor,
field effect transistor) or NMOS transistor. The NMOS transistor works as a voltage-controlled switch that
can be used to pull the signal line to a logic level. The NMOS switch will turn ON and close when its gate
(the control terminal) voltage is at VCC. The NMOS switch will turn OFF when its gate voltage is at GND.
When the NMOS is ON, a conduction path is formed between its other two terminals (the source and
drain), which effectively closes the switch. When the NMOS is OFF, there is no conduction path between
the source and drain, which effectively opens the switch. By connecting the drain terminal of the NMOS
to the signal line and the source terminal to GND, an open-drain output stage can pull the signal line to a
logic LOW by shorting it to GND; however, an open-drain output stage doesn’t have the ability to pull the
signal line to a logic HIGH. To accomplish driving the line HIGH, a pull-up resistor is used. By placing a
pull-up resistor to VCC on the signal line, it will be pulled to a logic HIGH when the NMOS is OFF.
Figure 14.29 shows the concept of an open-drain output.
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The open-drain output stage inherently creates a negative logic scheme because the NMOS control
signal needs to be a HIGH in order to pull the signal line to a LOW. In order to reverse the logic scheme
from the point of view of the MCU, an inverter is placed before the NMOS transistor. This allows the
peripheral to use positive logic (i.e., driving the output stage with a HIGH produces a signal line HIGH
and driving a LOW produces a signal line LOW).

Figure 14.30 shows the architecture of an I2C link highlighting the required pull-up resistors needed
on both SCK and SDA.

Fig. 14.29
Open-drain transmitter used on I2C buses

Fig. 14.30
I2C bus configurations
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I2C uses the concept of masters and slaves when communicating over the bus. The master is the
device that initiates communication and controls the clock. Multiple masters are also supported on an
I2C bus. Each slave on the bus has a unique and predetermined address called the slave address. This
address is used by the master to indicate which slave it wants to communicate with. Some I2C devices
have a hard-coded slave address that can’t be changed. Other devices may provide a portion of a hard-
coded slave address and allow the user to insert pull-up or pull-down resistors on pins to set the
remaining bits of the slave address.

When the bus is idle, both SDA and SCL are held high by the pull-up resistors, and no I2C device is
attempting to communicate. When devices are driving the bus, it is said to be busy.

I2C information is transferred in messages. A typical I2C message begins with a START
(S) condition and ends with a STOP (P) conditions. A master initiates a new message by generating a
START (S) condition by pulling SDA LOW while SCL is still HIGH. This tells every device on the bus that
a master is about to start communicating and they should get ready. As soon as the STARTcondition is
generated, the SCL will be pulled LOW and start pulsing to provide the clock for the message. The
master is responsible for pulsing the clock. The master ends a message by generating a STOP
condition. A STOP condition occurs when there is a LOW-to-HIGH transition on SDA while SCL is
HIGH. Once SDA goes HIGH, SCL also remains HIGH indicating that the bus is idle again.

Within a message, the data is divided into frames and control/status signals. Each clock pulse within
the I2C message is numbered by periods. The first clock pulse after a message is initiated is denoted
“period 1.” The second clock pulse is denoted “period 2,” and so on. Both the master and slaves count
the number of periods that have occurred since the message started in order to know when certain
frames and signals should be present on the bus. This is critical so that each device knows when it is
allowed to communicate within the message. This avoids multiple devices from pulling the SDA line
down the wrong time and causing an overcurrent situation. When discussing the details of an I2C
message, many documents will refer to the period number to identify what should be happening on
the bus at any given clock pulse.

After the master generates the START condition, it first sends the slave address that it wishes to
communicate with. I2C slave addresses can either be 7 bit (default) or 10 bit. The slave address is
followed by the read/write signal indicating which type of transaction is being requested in the message.
The START condition, slave address, and read/write signal constitute periods 1!8.

Period 9 of the message is reserved for the slave acknowledge (ACK) or no-acknowledge (NACK)
signal. After the slave address and read/write signal are sent by the master, each slave on the bus
checks whether it is being addressed. If a slave exists with the specified slave address, it will send an
ACK signal back to the master by pulling SDA LOW. If the master sees the ACK signal, it knows a slave
exists with the specified address and proceeds with the message. If no device exists on the bus with the
specified slave address, no device will pull down SDA. This will result in period 9 remaining HIGH and will
be interpreted as a NACK. A NACK in period 9 tells the master that no slave exists with the specified
address. The master then generates a STOP condition and ends the message.

After a successful ACK from the slave, data is then sent 8 bits at a time starting with the MSB. After
each byte is sent, the receiving device sends an ACK signal indicating that it successfully received the
data. When the master is writing to a slave, the master sends the 8 bits of data and the slave produces
the ACK/NACK signal. When the master is reading from a slave, the slave sends the 8-bits of data and
the master produces the ACK/NACK signal. After the data has been sent and acknowledged, the master
can end themessage by generating the STOP condition. Figure 14.31 shows the message breakdown of
a typical I2C bus when transferring one byte of data between a master and slave.
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Multiple bytes of data can also be sent within one message. Figure 14.32 shows the I2C protocol
when transferring multiple bytes of data in a message.

Fig. 14.31
I2C bus protocol (transferring 1 byte of data)
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I2C devices contain individual registers that hold their information. In the simplest case, an I2C
device contains only a single register. In this situation, read and write transactions are simply initiated by
the master to access information in the slave. Figure 14.33 shows the I2C bus protocol for writing to a
device with only a single register.

Fig. 14.32
I2C bus protocol (transferring multiple bytes of data)

Fig. 14.33
I2C bus protocol when writing to a device with a single register
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When reading from an I2C device with only a single register, the master initiates a message, sends
the slave address, and leaves the read/write period HIGH to indicate that a read is being conducted.
When data is transferred from the slave to the master, the master is in the position to produce the ACK
signal; however, when the slave sees an ACK, it will automatically send another byte of data. In order for
the master to tell the slave to stop sending data, it produces a NACK signal instead of an ACK after the
last byte of data it wants to read. Figure 14.34 shows the I2C bus protocol when reading from a slave with
only a single register.

Many I2C devices contain blocks of registers that can be individually accessed. When an I2C device
has multiple registers, each is assigned a register address. To access a specific register in the slave, the
master needs to provide the register address in the message. For a write transaction, the master
generates an I2C message that first provides the slave address, then provides the register address to
access, and then provides the data to be written. After each frame, the slave sends an ACK signal.
Figure 14.35 shows the I2C bus protocol for writing to a specific register within an I2C device by providing
the register address as the second frame within the message.

Fig. 14.34
I2C bus protocol when reading from a device with a single register
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In situations where the slave contains multiple registers, the master can also write a block of data.
This is handled by the slave by automatically incrementing its register address after each byte of data is
written. The master still sends the slave address, the write signal, and the starting register address. The
next byte of data that is sent goes into the first register address location. The slave then increments its
register address. The next byte written by the master goes into the next register address. The slave will
continue to increment its register address until it sees the STOP condition generated by the master. This
allows the master to write a block of data to the registers within the slave while only providing the starting
address of the register array. Figure 14.36 shows the I2C bus protocol for writing a block of data to a
device with multiple registers.

Fig. 14.35
I2C bus protocol when writing to a device with multiple registers (single byte of data)
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When reading from a device that contains multiple registers, two messages are needed. The first
message sets the register address within the slave that will be read from using a write transaction. The
first message puts the slave into a mode where it is expecting a second message that will read data from
the register address that was just sent. The second message performs a read transaction that retrieves
the data from the register address sent in the first message. An alternative approach can also be used
where a second START (Sr) condition is generated before the STOP condition of the first message. This
initiates the second read transaction immediately without giving up control of the bus. Figure 14.37
shows the I2C bus protocol for reading from a device with multiple registers using two messages or
alternatively by producing a second start condition within a single message.

Fig. 14.36
I2C bus protocol when writing to a device with multiple registers (block of data)
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The master can also read blocks of data from a slave. In this situation, the master still sends two
messages, the first setting the register address and the second retrieving the data. In the second
message, the master continually sends SCL pulses to read as many bytes as it wants prior to generating
the STOP condition. Figure 14.38 shows the I2C bus protocol for reading a block of data from a device
with multiple registers using two messages and also using a second start condition.

Fig. 14.37
I2C bus protocol when reading from a device with multiple registers (single byte of data)
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Fig. 14.38
I2C bus protocol when reading from a device with multiple registers (multiple bytes of data)
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The MSP430FR2355 contains two eUSCIs that support I2C. These are eUSCI_B0 and eUSCI_B1.
These two eUSCI peripherals are configurable to either support I2C or SPI. Each eUSCI has SCL and
SDA signals that share pins with ports on the MCU. The eUSCI_B0 SCL/SDA pins share with port 1, bits
3 and 2, respectively. The eUSCI_B1 SCL/SDA pins share with port 4, bits 7 and 6, respectively.
Figure 14.39 shows the location of the two I2C peripherals on the MSP430FR2355 LaunchPad™ board.

14.3.2 I2C Master Operation on the MSP430FR2355

Let’s start learning about the I2C protocol by looking at the transmit capabilities of the
MSP430FR2355 in master mode. Figure 14.40 shows a general block diagram of the I2C peripheral
on the MSP430FR2355.

Fig. 14.39
eUSCI_Bx I2C pins on MSP430FR2355 LaunchPad™ board
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The I2C system contains a variety of configuration registers that are used to trigger events, indicate
when certain conditions have occurred, and hold various information such as the slave address and the
data sent or received. The complete list of I2C configuration registers is below.

• eUSCI_Bx control word 0 (UCBxCTLW0) – has different bit fields when in I2C mode

• eUSCI_Bx control word 1 (UCBxCTLW0) – has different bit fields when in I2C mode

• eUSCI_Bx bit rate control word (UCBxBRW) – same function as in SPI mode

Fig. 14.40
I2C general block diagram of the eUSCI_Bx peripheral on the MSP430FR2355
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• eUSCI_Bx status (UCBxSTATW) – has different bit fields when in I2C mode

• eUSCI_Bx byte counter threshold (UCBxTBCNT)

• eUSCI_Bx receive buffer (UCBxRXBUF) – same function as in SPI mode

• eUSCI_Bx transmit buffer (UCBxTXBUF) – same function as in SPI mode

• eUSCI_Bx I2C own address 0 (UCBxI2COA0)

• eUSCI_Bx I2C own address 1 (UCBxI2COA1)

• eUSCI_Bx I2C own address 2 (UCBxI2COA2)

• eUSCI_Bx I2C own address 3 (UCBxI2COA3)

• eUSCI_Bx received address (UCBxADDRX)

• eUSCI_Bx address mask (UCBxADDMASK)

• eUSCI_Bx I2C slave address (UCBxI2CSA)

• eUSCI_Bx interrupt enable (UCBxIE) – has different bit fields when in I2C mode

• eUSCI_Bx interrupt flag (UCBxIFG) – has different bit fields when in I2C mode

• eUSCI_Bx interrupt vector (UCBxIV) – has different bit fields when in I2C mode

The recommended order of steps from the MSP430 user’s guide to configure the I2C peripheral is:

1. Set the UCSWRST bit in the UCBxCTLW0 configuration register to put the eUSCI_Ax periph-
eral into software reset.

2. Initialize all eUSCI_Bx configuration registers.
3. Configure ports.
4. Clear UCSWRST to take the eUSCI_Ax peripheral out of reset.
5. Enable interrupts (optional) in the UCBxIE configuration register.

14.3.2.1 Writing Data as an I2C Master

The first step in setting up the I2C peripheral is to put the system into software reset to avoid
erroneous data from being transmitted during setup. This is done by setting the UCSWRST bit in the
eUSCI_Bx control word 0 (UCBxCTLW0) register. Upon reset, UCSWRST ¼ 1, so eUSCI_Bx is in
software reset by default; however, it is good practice to explicitly set this bit in order to ensure the system
is disabled. Figure 14.41 gives the details of the UCBxCTLW0 register where the UCSWRST resides.
This is the same register as is used to configure the eUSCI_Bx SPI peripherals; however, many of the
fields are used for different settings when configuring the peripheral as an I2C.
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Fig. 14.41
eUSCI_Bx control word register 0 (UCBxCTLW0): I2C mode
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The next configuration step that is handled in the UCBxCTLW0 register is selecting the clock for the
eUSCI_Bx peripheral (i.e., BRCLK). This is done using the UCSSELx bits. When in I2C model, the
default setting for UCSSELx ¼ 11, which selects SMCLK on the MSP430FR2355. The only other choice
for BRCLK is the external pin UCBxCLK (UCSSELx ¼ 00). On the MSP430FR2355 LaunchPad™
board, we will always use the default setting of SMCLK for the BRCLK source.

The next step to set up the clock is configuring the UCBxBRW register, which is the prescaler/divider
for the source clock. The value that is stored into UCBxBRW will divide the incoming clock source (i.e.,
BRCLK) to produce the SCL that will be used by the master and all slaves. This register is used in the
same way for I2C as in SPI as a clock prescaler/divider.

Just as with the SPI interface, many of the I2C peripheral settings are configured in the
UCBxCTLW0 register. The UCMODEx bits dictate whether the peripheral is set up in SPI or I2C
(UCMODEx ¼ 11 for I2C). Since only SPI and I2C are used in the eUSCI_Bx peripherals, the synchro-
nous mode enable (UCSYNC) bit is always high. The UCMST bit in UCBxCTLW0 dictates whether the
MCU will be the I2C master (UCMST¼ 1) or slave (UCMST¼ 0). The UCTR bit in UCBxCTLW0 dictates
whether the MCU will be transmitting (UCTR ¼ 1) or receiving (UCTR ¼ 0) data. The UCA10 bit
configures whether the MCU’s own slave address is 7 bits or 10 bits when the MCU is the slave. The
UCA10SLA bit configures whether the external slave address is 7 bits or 10 bits when the MCU is the
master. There are also four bits within UCBxCTLW0 that will trigger events on the I2C bus such as
generating a STARTcondition (UCTXSTT ¼ 1), generating a STOP condition (UCTXSTP ¼ 1), sending
an ACK (UCTXACK ¼ 1), and sending a NACK (UCTXNACK ¼ 1).

There are additional configuration bits for settings up a basic I2C master transmitter in the
UCBxCTLW1 register. The most commonly used setting is the automatic STOP condition generation
(UCASTPx). When UCASTPx¼ 10, the master will automatically generate the STOP condition once the
desired number of data bytes have been sent or received. Figure 14.42 gives the details of the
UCBxCTLW1 register where UCASTPx resides.
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The slave address that the master wishes to communicate with is configured in the UCBxI2CSA
register. Figure 14.43 gives the details of the UCBxI2CSA register.

Fig. 14.42
eUSCI_Bx control word register 1 (UCBxCTLW1): I2C mode
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The last configuration needed to set up a basic master write transmission is the number of bytes that
are to be sent using the UCBxTBCNT register. The MCU will continue to send until the number of bytes
transferred matches the value in UCBxTBCNT. After the desired number of bytes has been transferred,
the master will automatically generate the STOP condition if UCASTPx ¼ 10. Figure 14.44 gives the
details of the UCBxTBCNT register.

At this point, we have covered all of the eUSCI_Bx settings to configure the I2C system for a basic
master write transaction. The next step is to configure the ports on the MSP430FR2355 to use the SCL
and SDA. Just as in the other serial peripherals, this is done using the PxSEL1 and PxSEL0 configura-
tion registers. The settings for these port configuration registers were given in Table 14.2 in Sect. 14.1.2.

At this point if we were using UARTor SPI, the peripheral would be set up enough so that we could
simply store information into the Tx buffer, and it would be shifted out; however, in I2C, the Tx buffer can
only be written to within the eUSCI_Bx interrupt service routine. This ensures that the data is only shifted
out after other events in the protocol have occurred, such as sending the slave address and receiving an

Fig. 14.43
eUSCI_Bx_I2C slave address register (UCBxI2CSA)

Fig. 14.44
eUSCI_Bx byte counter register (UCBxTBCNT): I2C mode
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ACK from the slave. TheMSP430 contains a large number of interrupt capabilities that help automate the
process of sending and receiving portions of the I2C message. These interrupts are enabled in the
UCBxIE register (shown in Fig. 14.45), have flags in the ICBxIFG register (shown in Fig. 14.46), and can
be prioritized in the event of simultaneous interrupts in the UCBxIV register (shown in Fig. 14.47). Note
that these three registers are the same as used when the eUSCI_Bx peripherals are configured in SPI
mode, but with different bit fields.

Fig. 14.45
eUSCI_Bx interrupt enable (UCBxIE) register: I2C mode
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Fig. 14.46
eUSCI_Bx interrupt flag (UCBxIFG) register: I2C mode
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At this point we have enough background information to design our first I2C program. Let’s design a
program that will configure the eUSCI_B0 peripheral as an I2C master and transmit one byte to a slave.
The address of the slave will be 0� 68 and is set in the UCB0I2CSA register during initialization. We will
write to the slave as if it only has one internal register, so we won’t provide a register address. Our
program will use a while() loop to generate a STARTcondition periodically by asserting the UCTXSTT bit
within the UCB0CTL0 register, followed by a delay. When UCTXSTT is asserted, the MSP430 will
generate the START condition and automatically send out the slave address held in UCB0I2CSA. It
will then wait for an ACK from the slave. Once an ACK is received, the UCTXFLG0 will be asserted and
an eUSCI_B0 interrupt will be triggered. Within the eUSCI_B0 service routine, we will write data to the Tx

Fig. 14.47
eUSCI_Bx interrupt vector (UCBxIE) register: I2C mode
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Buffer (UCTXBUF). We will use the automatic STOP generation feature of the MSP430 (UCASTP ¼ 10)
in order to end the message after the number of bytes sent matches the value in UCB0TBCNT. By
configuring UCB0TBCNT ¼ 1, the message will only send one byte and then stop. Follow the design in
Examples 14.36, 14.37, and 14.38 to see how to use the I2C peripheral in master transmit mode to send
one byte to a slave13.

Example 14.36
Transmitting one byte from an I2C master (part 1)
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Example 14.37
Transmitting one byte from an I2C master (part 2)
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Now let’s look at a program that will configure the MSP430FR2355 as an I2C master in transmit
mode, but this time send out a register address followed by three bytes of data to write. In this program,
we will create an array that holds four bytes, the register address followed by the three bytes of data. In
order to tell the peripheral to send four bytes before generating the STOP condition, we will set
UCB0TCNT¼ 4. Each time a byte of data is ready to be put into the Tx buffer for transmit, the UCTXIFG0
will assert and the eUSCI_B0 interrupt will trigger. Within the ISR, we will insert logic to store the next
byte of data in our array into the Tx buffer. Follow the design in Examples 14.39, 14.40, and 14.41 to see
how to use the I2C peripheral in master transmit mode to send the slave register address followed by
three bytes of data.

Example 14.38
Transmitting one byte from an I2C master (part 3)
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Example 14.39
Transmitting a register address and three bytes of data from an I2C master (part 1)
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Example 14.40
Transmitting a register address and three bytes of data from an I2C master (part 2)

14.3 Inter-integrated Circuit (I2C) Bus • 409



14.3.2.2 Reading Data as an I2C Master

When reading from a slave, we follow many of the initialization steps as when transmitting. We still
configure the speed of SCL using UCB0BRW, put the peripheral into I2C mode using UCMODEx, and
make it a master using UCMST. We still put the slave address to communicate with into UCB0I2CA and
indicate the number of bytes that will be transferred before an automatic STOP condition using
UC0TBCNT. The only difference during eUSCI_B0 initialization for reading is to put the peripheral into
receive mode using UCTR ¼ 0.

When reading, the UCRXIFG0 will be asserted when the slave sends back a byte of data and it
arrives in the Rx buffer. This flag will trigger an eUSCI_B0 interrupt. Within the eUSCI_B0 service routine,
we will simply store the Rx buffer value into a variable. During read mode, the master will produce a
NACK signal after the last byte in the transmission has been received as dictated by the value in
UC0TBCNT.

Let’s look at a program that will continually read one byte of data from a slave with a slave address of
0 � 68. In this program we will continually generate a START condition by setting UCTXSTT within the
main loop. We will use an Rx interrupt service routine to read the value received in the Rx buffer. Follow
the design in Examples 14.42, 14.43, and 14.44 to see how to use the I2C peripheral in master receive
mode to read a single byte of data from a slave.

Example 14.41
Transmitting a register address and three bytes of data from an I2C master (part 3)
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Example 14.42
Receiving one byte from an I2C slave (part 1)
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Example 14.43
Receiving one byte from an I2C slave (part 2)
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Now let’s look at an example of reading from a specific register address within the slave device.
Recall that this is accomplished by sending two messages; the first is a write message that provides the
register address in the data frame; the second is a read message that transfers the data in the provided
register address from the slave to the master. There are a variety of ways to accomplish this design. The
example that will be presented generates the start conditions for the two messages in the main while()
loop and then allows the eUSCI_B0 interrupt service routine to handle transmitting the register address
during the write message and receiving the data during the read message. When using this approach,
there needs to be functionality in-between the two start conditions that waits for the prior message to
complete before the next message can be sent. This is accomplished by polling the STOP flag
(UCSTPIFG) in the UCB0IFG register. This flag will assert once the stop bit has been generated for a
complete message. Follow the design in Examples 14.45, 14.46, and 14.47 to experiment with using two
messages to read from a specific register address within a slave.

Example 14.44
Receiving one byte from an I2C slave (part 3)

14.3 Inter-integrated Circuit (I2C) Bus • 413



Example 14.45
Reading from a specific slave register address using two I2C messages (part 1)
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Example 14.46
Reading from a specific slave register address using two I2C messages (part 2)
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Example 14.47
Reading from a specific slave register address using two I2C messages (part 3)
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14.3.3 I2C Slave Operation on the MSP430FR2355

While most of the time an MCU acts as the I2C master, the MSP430FR2355 also can be configured
as an I2C slave. This allows other I2C masters to use some of the capabilities on the MCU such as its
timers, its ADC, or any of its other peripherals. Configuring the MSP430FR2355 as a slave is accom-
plished using UCMODx ¼ 11 to put the peripheral into I2C mode and UCMST ¼ 0 to configure it as a
slave. In slave mode, the MCU does not produce SCL, so no configuration of UCSSELx or UCBRx is
needed. The MCU is first put into receiver mode using UCTR ¼ 0 in order to receive the I2C slave
address that the master sends out to all slaves. The MSP430FR2355 supports up to four separate and
user-programmable slave addresses. Each of these slave addresses contains independent interrupts
flags for both Tx and Rx. The slave address values are stored in the eUSCI_Bx I2C Own Address n
(UCBxI2COAn) registers by the user during initialization. The four specific register names in the
MSP430FR2355 are UCBxI2CA3, UCBxI2CA2, UCBxI2CA1, and UCBxI2CA0. Each of these registers
contains anOwn Address Enable (UCOAEN) bit in position 10 that must be asserted if the slave address
register is to be active. The UCBxI2CA0 register is unique in that its 15th position is the General Call
Response Enable (ECGEN) for the MCU’s entire slave system. The 15th positions in the other three I2C
own address registers are reserved. Figure 14.48 gives the details of the UCBxI2COAn registers.

In slave mode, if the I2C slave address sent by a master matches any of the values in an enabled
UCBxI2COAn register, an ACK will be automatically sent and the UCSTTIFG flag is set. Whether the
MCU is supposed to transmit or receive is configured automatically by setting the corresponding
UCTXIFG or UCRXIFG flag in the slave (i.e., there is no need to manually configure UCTR). The user
simply needs to read or write to the Tx or Rx buffers within the eUSCI_B service routine depending on the
type of data transfer that is being requested.

For a slave transmit, data is put into the Tx buffer and automatically shifted out. The master will send
back an ACK if it wants to receive another byte. This ACK will trigger another transmit interrupt so that the
MCU can send more data. If the master is done receiving data, it will send a NACK followed by the STOP
condition to end the message.

Fig. 14.48
eUSCI_Bx I2C own address n (UCBxI2COAn) register
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For a slave receive, the master will shift data into the Rx shift register. When complete, the data will
be transferred to the Rx buffer and the UCRXIFG is asserted indicating that it is ready to be transferred
into an internal variable. The slave will then send an ACK signal back to the master.

CONCEPT CHECK

CC14.3 What is the most common mistake that beginners make when implementing an I2C
bus for the first time that prevents the bus from working?

A) They forget to put the pull-up resistors on SCL and SDA.

B) The answer is “A”.

Summary

v Serial communication links allow data to be
transmitted as a series of bits across a single
line. This reduces the number of pins needed
compared to parallel communication, which
sends each bit on its own line.

v The MSP430FR2355 supports three built-in
serial communication standards: UART, SPI,
and I2C.

v The MSP430FR2355 contains four serial
communication peripherals called
eUSCI_A0, eUSCI_A1, eUSCI_B0, and
eUSCI_B1.

v The MSP430FR2355 eUSCI_Ax peripherals
can be configured to operate in UART or
SPI mode.

v The MSP430FR2355 eUSCI_Bx peripherals
can be configured to operate in I2C or
SPI mode.

v A UART interface sends data in an asynchro-
nous manner. This reduces the number of
signals needed in the link by not passing a
clock between the transmitter and receiver.

v Before a UART begins transmitting data, the
Tx and Rx are configured to have the same
data frame characteristics and the baud rate.

v The baud rate describes the number of times
per second that the line can change states.
On the MSP430, the only two states
supported are HIGH and LOW. This means
the baud rate is also the number bits that can
be sent per second (i.e., the bit rate).

v When two devices are connected for serial
communication, it is called a link.

v A simplex link contains one wire and only
supports serial communication in one
direction.

v A full-duplex link contains two dedicated
wires: one for transmitting from device A to
B and one for transmitting from device B to A.

v A half-duplex link shares a single line but
supports bidirectional communication. In
this type of link, the two devices must share
the line. Half-duplex links require an arbitra-
tion scheme to avoid having two devices
transmitting at the same time.

v UART framing is the term that describes the
format of the serial bit sequence. UART
frames are typically 8 bits long with one
start bit and one stop bit and send the LSB
first. Other UART frame options are available
such as 7-bit packets, sending the MSB first,
adding a second stop bit, adding an error
checking parity bit, and adding an
address bit.

v The UART transmitter and receiver use shift
registers to send and receive the serial infor-
mation. When transmitting, data is written
into a Tx buffer. The Tx buffer is then trans-
ferred into the Tx shift register and shifted
out. When receiving, data is shifted into the
Rx shift register. It is then transferred into a
Rx buffer.

v A UART receiver recovers the information
sent by the receiver by oversampling the
incoming data. The sampling sequence
begins when the receiver sees the start bit.
It then counts the number of samples until it
reaches a point where it knows the entire
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frame has been received. The most common
oversampling ratio is 16�. The Tx shift regis-
ter is clocked at the link’s baud rate. The Rx
shift register is clocked at the oversampling
ratio (i.e., 16 � BR).

v UART is a communication scheme. When
logic levels are applied to the logic states,
the scheme becomes a standard. Standards
allow separate devices to design circuitry
and programs that will interface with other
devices using the same standard. Two com-
mon UARTstandards are TTL and RS-232.

v The MSP430FR2355 has circuitry to gener-
ate a clock to produce the desired baud rate.

v The source of the clock system can be cho-
sen between an internal pin, ACLK, and
SMCLK.

v The baud rate generator circuit contains a
prescaler block followed by a modulator
block. The prescaler block divides the
UARTsource clock to get close to the desired
baud rate. The modulator blocks then apply
incremental adjustments to the clock divider
ratio in order to compensate for any addi-
tional error.

v The MSP430FR2355 contains a variety of
configuration registers to set up the UART.
When setting up the UART, the
recommended sequences of steps is:
(1) put the system into software reset using
UCSWRST; (2) initialize the eUSCI registers;
(3) configure the ports; (4) take the system
out software reset using UCSWRST; and
(5) enable interrupts (optional).

v When using the eUSCI peripherals, the
PxSEL1:PxSEL0 registers are used to select
the serial communication peripheral for the
pin’s function.

v The MSP430FR2355 provides interrupts to
indicate when data has been transmitted or
received.

v A terminal window provides a way to transmit
and receive standard I/O through the
computer’s serial port. By default, data is
encoded in ASCII when using a terminal.
ASCII assigns a unique 8-bit code to every
symbol in the American written language.
The data type “char” will automatically store
the ASCII code for the symbol provided.

v The SPI protocol provides a way to transmit
serial data in a synchronous manner.

v The SPI protocol uses the concept of a mas-
ter and a slave where the master provides
the clock for every device in the system.

v The SPI serial clock is called SCLK. By
default, data is transmitted by the master on
the rising edge of SCLK and latched by the
slave(s) on the falling edge.

v The SPI master data out is denoted SIMO for
“slave in, master out.” Sometimes this is also
referred to as MISO, for “master out, slave
in.”

v The SPI master data in is denoted SOMI for
“slave out, master in.” Sometimes this is also
referred to as MOSI, for “master in, slave
out.”

v In SPI three-wire mode, a single master and
single slave communicate using SCLK,
SIMO, and SOMI.

v The SPI system can also use a slave trans-
mit enable (STE) line in order to activate
individual slaves for communication. Some-
times this is also referred to as slave select
(SS).

v When a SPI system uses an STE line, it is
called four-wire mode.

v The SPI system uses shift registers on the Tx
and Rx to transfer data. A common SCLK
provided by the master will clock all shift
registers in the system.

v Multiple SPI slaves can be configured in as a
bus, in which the SIMO and SOMI lines are
shared among all devices and each slave it
enabled with its own STE.

v Multiple SPI slaves can also be configured in
a daisy-chain configuration in which a contin-
uous shift register loop is created among the
master and all slaves. Each time an SCLK
pulses, data is shifted around the loop. The
master must count the number of SCLKs that
have occurred in order to track where in the
loop the current data resides.

v The MSP430FR2355 SPI system generates
SCLK using a clock generation circuit. The
source of the clock system can be chosen
between an internal pin, ACLK, and SMCLK.
The clock generation circuit also contains a
programmable prescaler that divides down
the source clock to provide slower bit rates.

v For the master to receive data, it must gener-
ate the SCLKs to shift data into its receive
buffer. This is accomplished by writing data
(dummy or real) into its own Tx buffer. Writing
to the master Tx buffer initiates a transfer and
generates the SCLK for all devices.

v For a slave to transmit data, it stores informa-
tion into its Tx buffer and then must wait for
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the master to provide pulses on SCLK to shift
the data out.

v The SPI system provides interrupts to indi-
cate if the data has been shifted out (TXIFG)
or if new data has arrived (RXIFG).

v I2C is a serial interface that is implemented
with a two-wire, half-duplex bus. I2C
supports multiple masters and multiple
slaves.

v I2C provides synchronous communication
over a two-wire bus. The two signals are
SCL (serial clock) and SDA (serial data).

v The MSP430FR2355 eUSCI_Bx peripherals
can be configured in either SPI or I2C mode.
This means the MCU supports up to two I2C
systems.

v The I2C bus is driven with open-drain
transmitters. An open-drain transmitter can
pull the signal line LOW but cannot drive it
HIGH. To produce a logic HIGH on the signal,
a pull-up resistor to VCC is needed on both
SCL and SDA.

v If no devices are driving the bus, it is idle and
the pull-up resistors pull both SCL and
SDA HIGH.

v At any given time, only one master can be
controlling the bus. When the bus is being
used, it is busy.

v Each slave on the bus has a unique slave
address that the master uses to request
communication.

v I2C transmits information in messages. A
message is contained between START and
STOP conditions, each generated by the
master. The master produces SCL for the
message.

v The first frame within an I2C message is the
slave address followed by a read/write bit. If
any slave on the bus has the address that the
master is sending, it will send back an ACK
signal indicating that it exists and is ready.

v Each bit in the message is given a period
count value for documentation purposes. If
a slave sends an ACK to the slave address, it
occurs in period 9.

v If a slave sends an ACK in period 9, the next
frame in the message is data. If the transac-
tion is a write, data is transmitted by the

master to the slave. If the transaction is a
read, data is received by the master from
the slave.

v When in transmit mode, the slave sends an
ACK after each data byte is received from the
master. The master can send multiple bytes
of data to the slave in one message.

v When receiving, the master sends an ACK
after each data byte is received with the
exception of the last data byte. On the last
data byte transferred in the message, the
master sends a NACK to tell the slave to
stop transferring data. The master then
generates the STOP condition.

v I2C devices typically have multiple registers
that hold various information. In these
devices, continually reading from the slave
will result in the device incrementing through
its register addresses automatically to
sequentially output all of its register data.

v A master can also access a specific slave
register address. For a write transaction, the
master will generate the START condition,
send the slave address, wait for the slave
ACK, and then send the register address
followed by the data to write.

v For an I2C read transaction from a specific
slave register address, two messages are
needed. In the two-message approach, the
first message is a write transaction, and the
master sends the register address it wishes
to access in the data field. The second mes-
sage is a read, and the specified register
address sends back its information.

v Accessing a specific register can also be
done using a single message and a repeated
start condition. The message begins with a
write transaction and provides the register
address. But instead of generating the
STOP condition, the master generates a sec-
ond STARTcondition and begins a new read
transaction. This approach avoids a second
master from taking over the bus during the
communication, which might occur when
using the two-message approach.

Exercise Problems

Section 14.1: Universal Asynchronous
Receiver/Transmitter (UART)
14.1.1 What is an advantage of using the UART inter-

face for serial communication?

14.1.2 What is a disadvantage of using the UART
interface for serial communication?

14.1.3 Choose the baud rate in the following list that is
not commonly used in UART communication:
9600, 38,400, 115,200, 1 M.
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14.1.4 What value would you put into UCSSEL if you
wanted to select ACLK as the BRCLK?

14.1.5 What value would you put into UCSSEL if you
wanted to select SMCLK as the BRCLK?

14.1.6 You are setting up a baud rate of 57,600 on the
MSP430FR2355 with a BRCLK¼SMCLK.
What value do you need to load into
UCAxBRW to set the prescaler?

14.1.7 You are setting up a baud rate of 57,600 on the
MSP430FR2355 with a BRCLK¼SMCLK.
What value do you need to load into
UCAxMCTL to set the second stage
modulation?

14.1.8 You receive a UART bitstream of 0b01000010
its LSB arriving first. After putting the bitstream
back into its MSB first order, what the ASCII
character that was received?

14.1.9 You receive a UART bitstream of 0b01000110
its LSB arriving first. After putting the bitstream
back into its MSB first order, what the ASCII
character that was received?

14.1.10 Why is an Rx interrupt critical for UART
operation?

Section 14.2: Serial Peripheral Interface
(SPI)
14.2.1 What is an advantage of using the SPI protocol

for serial communication?

14.2.2 What is a disadvantage of using the SPI proto-
col for serial communication?

14.2.3 What is the SPI mode called when only a single
master and single slave are connected and an
STE signal is not used?

14.2.4 What is the SPI mode called when the STE
signal is used as a slave enable?

14.2.5 What is the SPI link configuration called when
the SIMO and SOMI lines are shared across all
slaves and each slave has its own STE
enable line?

14.2.6 What is the SPI link configuration called when
the SIMO and SOMI lines are connected to
form a continuous data loop that the serial
information is shifted around?

14.2.7 What is the fastest SCLK that can be
generated on the MSP430FR2355 Launch-
Pad™ board?

14.2.8 What value would you put into UCAxBRW if
you wanted to generate an SCLK with a fre-
quency of 500 kHz with a BRCLK¼SMCLK?

14.2.9 What value would you put into UCAxBRW if
you wanted to generate an SCLK with a fre-
quency of 25 kHz with a BRCLK¼SMCLK?

14.2.10 If the master is going to send out a 16-byte
packet of information with the default framing
characteristics, how many SCLK pulses will it
need to generate to transfer this amount
of data?

Section 14.3: Inter-integrated Circuit (I2C)
Bus
14.3.1 What external circuitry needs to be connected

to an I2C bus due to the nature of its open-
drain transmitter architecture?

14.3.2 What logic level is the open-drain transmitter
able to drive an I2C signal to?

14.3.3 What is the first thing that is sent over the I2C
bus after the master generates the START
condition?

14.3.4 What signal is sent in period 9 if a slave on the
I2C bus has the same slave address as was
sent by the master in periods 1!7?

14.3.5 What signal is sent in period 9 if there isn’t a
slave on the I2C bus that has the same slave
address as was sent by the master in periods
1!7?

14.3.6 What field is sent in period 8 of an I2C
message?

14.3.7 If the master is sending data to a slave, what
does the slave send back after each byte is
successfully received?

14.3.8 If the master is sending data to a slave, what
does the slave send back if the data was not
successfully received or wasn’t understood?

14.3.9 If a master is reading from a slave and wants to
tell it to stop sending data, what does the
master do?

14.3.10 How many separate slave addresses can the
MSP430FR2355 support when configured in
slave mode?
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Chapter 15: Analog-to-Digital
Converters

This chapter looks at the analog to digital conversion (ADC) capability of the MSP430 [1–3]. ADCs
allow embedded computers to convert analog voltages into digital values so that they can be monitored
in real-time and trigger responses. The MSP430FR2355 contains a 12-bit ADC core that can perform
conversions on up to 16 user-selected inputs. This chapter gives an overview of the ADC peripheral on
the MSP430FR2355 and how to design a program in C to use it.

Learning Outcomes—After completing this chapter, you will be able to:

15.1 Describe the basic concept of operation of an analog-to-digital converter.
15.2 Design programs that use the MSP430FR2355’s ADC peripheral in C.

15.1 Analog-to-Digital Converters

An analog-to-digital converter (ADC or A2D) is a circuit that takes in an analog voltage and produces
a digital representation of its value. ADCs consist of two stages, a sample-and-hold stage and a
conversion stage. When the sample-and-hold stage is activated, it makes momentary contact with the
input signal and allows it to charge a capacitor within the sample circuit. The goal of this momentary
contact is to charge the capacitor to the same voltage as the input. The sample-and-hold circuitry is
designed so that this can be accomplished very quickly so that it can disconnect from the input signal as
soon as possible to avoid altering its signal integrity. The action of duplicating the voltage value of the
input signal is called a sample. A capacitor is able to hold this voltage for a brief amount of time, thus
providing the hold functionality of the sample-and-hold circuit. The conversion stage then produces a
digital value that represents the analog value held on the capacitor.

The conversion of the analog sample into a digital number is called digitizing, quantizing, or
discretizing the value. All of these terms refer to how a continuous analog signal is converted into a
set of discrete digital numbers. An ADC has an analog input range that it digitizes across. The range is
provided to the ADC using two inputs, the voltage reference high (VR+) and the voltage reference low
(VR�).

ADCs can be configured to sample periodically. The speed at which samples are collected is called
the sample rate and typically has units of kilo samples per second (ksps) or mega samples per second
(Msps). If the sample rate is sufficiently faster than the frequency of the input signal, then an accurate
representation of the input signal can be reconstructed using the samples. The Nyquist-Shannon
sampling theorem from communication theory states that if the sample rate is at least twice as fast as
the frequency of the input signal, then the input signal can be reconstructed. Most ADCs run at sample
rates that are much higher than the minimum rate dictated by the Nyquist-Shannon sampling theorem.
Figure 15.1 shows the concept of operation of a basic ADC.
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The resolution of an ADC refers to how many bits wide (n) the digital output value is. Common
resolution values in MCUs are 8-bit, 10-bit, and 12-bit. The larger the resolution, the more accurate the
conversion of the input signal is.

The precision of an ADC is the smallest voltage that the LSB of the digitized number can represent.
The resolution is found by dividing the input voltage range by 2n (i.e., (VR+ � VR�)/2

n).

The actual analog voltage (Vanalog) that the ADC result represents can be found by multiplying the
digital result (NADC) by the precision (i.e., Vanalog ¼ NADC ∙ precision).

Fig. 15.1
Analog-to-digital converter (ADC) concept of operation
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The accuracy of an ADC states how close its digital output is to the actual input signal voltage.
An ADC will only ever be able to get within � ½ LSB of the original input signal due to the way that the
input range is divided into discrete values that are 1 LSB apart from each other. The accuracy of a sample
gives a range of voltages that the final digital output lies within (i.e., Vanalog ¼ NADC ∙ resolution�½ LSB).
Figure 15.2 gives a summary of the key ADC parameters.

Fig. 15.2
Analog-to-digital converter (ADC) parameters
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CONCEPT CHECK

CC15.1 If precision is important, why not just make an ADC with a massive amount of resolution
such as 256-bits?

A) The primary limit to the number of bits in an ADC is electrical noise. At some
point, the neighboring digital codes represent analog values that are so close
together that the electrical noise that exists in every system is much larger
than the precision and the further digitizing is pointless.

15.2 ADC Operation on the MSP430FR2355

The MSP430FR2355 contains an ADC core with selectable resolution (8-bit, 10-bit, or 12-bit). The
ADC can be driven with 1 of 16 inputs that are selected using an analog multiplexer that sits in front of the
ADC core. The ADC clock source is selectable with two stages of programmable dividers/prescalers.
The voltage range of the ADC is also programmable with options of using the power supply (VCC) and
GND (VSS), input pins, or a variety of internally generated voltages. The ADC peripheral also has a large
number of programmable options that dictate its behavior in addition to six interrupts that can be
triggered upon certain conditions. Figure 15.3 shows a simplified block diagram of the ADC peripheral
on the MSP430FR2355.

Fig. 15.3
Block diagram of ADC peripheral on the MSP430FR2355
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The basic use model for the ADC peripheral is that it is first configured using a set of registers; then
the conversion is started by the user (or by the successful completion of a prior conversion), and then the
result of the conversion can be read from the ADC’s conversion memory register. Flags can be used to
track the status of the conversion and trigger interrupts to react to various states of the conversion (i.e.,
conversion complete). The complete list of ADC registers on the MSP430FR2355 MCU is as follows:

• ADC control 0 (ADCCTL0) register

• ADC control 1 (ADCCTL1) register

• ADC control 2 (ADCCTL2) register

• ADC memory control (ADCMCTL0) register

• ADC conversion memory (ADCMEM0) register

• ADC interrupt enable (ADCIE) register

• ADC interrupt flag (ADCIFG) register

• ADC interrupt vector (ADCIV) register

• ADC window comparator low threshold (ADCLO) register

• ADC window comparator high threshold (ADCHI) register.

The ADC is configured using four main registers: ADCCTL0, ADCCTL1, ADCCTL2, and
ADCMCTL0. We will go through the settings in each of these registers that are needed to get a basic
ADC program working. The ADCCTL0 register contains the settings for the number of ADCCLK cycles to
use during the conversion (ADCSHTx), how the ADC is triggered (ADCMSC), turning the ADC on
(ADCON), enabling the conversion (ADCENC), and starting a conversion (ADCSC). The ADCENC
and ADCSC bits are used to start a conversion by asserting them simultaneously. All other settings
are done in the initialization portion of the program. Figure 15.4 gives the details of ADCCTL0.
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The ADCCTL1 register contains settings for the source of the sample trigger (ADCSHSx), an option
for running the sampler in pulse mode (ADCSHP), an input inversion option (ADCISSH), settings for the
second clock divider stage (ADCDIVx), the ADC clock source (ADCSSELx), whether the conversion is to
run once or multiple times upon a trigger (ADCCONSEQx), and a status flag indicating the conversion is
busy (ADCBSUSY). Figure 15.5 gives the details of ADCCTL1.

Fig. 15.4
ADC control register 0 (ADCCTL0)
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Fig. 15.5
ADC control register 1 (ADCCTL1)
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The ADCCTL2 register contains settings for the first clock divider stage (ADCPDIVx), the resolution
of the ADC (ADCRES), the data format of the result (ADCDF), and the range for the anticipated sample
rate (ADCSR). Note that the default setting for ADCRES is 01 (10 bits). If this setting is to be changed, the
LSB of ADCRES needs to be cleared before the new settings are written. Figure 15.6 gives the details of
ADCCTL2.

The ADCMCTL0 register contains settings for the reference voltage selection (ADCSREFx) and the
ADC input channel that will be routed to the sample-and-hold stage (ADCINCHx). For the ADCSREFx
settings, “VREF” refers to the internal reference voltages that the MCU can produce while “VEREF+/�”

refers to external pins. Also, “AVCC” refers to the MCU power supply (+3.4 V) while “AVSS” refers to the
MCU ground (0 V). The ADCINCHx setting allows 1 of 16 different input channels to be chosen. Of these
16 channels, 12 can come from MCU port pins. If any of these 12 port pins are to be used, they must also
be configured for ADC usage using PxSEL1:PxSEL0. The other four options for ADC input channels
include an internal temperature sensor, the internal reference voltage, the power supply (VCC), and
GND (VSS). Figure 15.7 gives the details of ADCMCTL0.

Fig. 15.6
ADC control register 2 (ADCCTL2)
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The ADC peripheral contains six interrupt flags that can be used to monitor the status of the
conversion. There is an interrupt flag that will trigger when a conversion is complete (ADCIFG0).
There are three interrupts that can be used with a threshold window feature where the ADC watches
for whether the input is within the window (ADCINIFG), below the window (ADCLOIFG), or above the
window (ADCHIIFG). There is also one interrupt to indicate if ADCMEM0 has been written to before the
last conversion result has been read (ADCOVIFG). Finally, there is one interrupt to indicate that a new
conversion is triggered before the current conversion has completed (ADCTOVIFG). These interrupts
are maskable and are locally enabled within the ADCIE register (shown in Fig. 15.8). The flags for these
ADC interrupts are held in the ADCIFG register (shown in Fig. 15.9). The ADCIV provides unique codes
for simultaneous interrupts that can be used to set the priority of the response (Fig. 15.10). The ADC has
one interrupt vector address.

Fig. 15.7
ADC conversion memory control (ADCMCTL0) register
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Fig. 15.8
ADC interrupt enable (ADCIE) register

Fig. 15.9
ADC interrupt flag (ADCIFG) register



Let’s now design a program to use the ADC on the MSP430FR2355 to digitize an analog voltage on
P1.2. This pin can be driven on the LaunchPad™ board using a function generator. We will drive a sine
wave voltage into P1.2 that goes from 0 to +3.4 V. We will continually digitize this signal and assert the
LEDs depending on its value. When P1.2 is below +3.0 V, LED2 (green) will be asserted and LED1 will
be off. When P1.2 is above +3.0 V, LED1 (red) will be asserted and LED2 will be off.

The first step to set up the ADC for this design is to use the P1SEL1:P1SEL0 registers to configure
P1.2 to use its analog function (A2). Within the ADCCTL0 register, we will set the number of conversion
cycles to 16 using ADCSHTand turn the ADC on using ADCON.Within ADCCTL0 we do not need to use
ADCMSC because we are not going to use repeated mode. Within ADCCCTL1 we will select SMCLK as
the ADC clock source using ADSSELx and select the sample timer as the source for the sample trigger
using (ADCSHP). We will use the default values for ADCSHS (use ADCSC to trigger sample), ADCISSH
(no inversion), and ADCDIVx (no clock division). We will also accept the default value for
ADCCONSEQx, which is to configure the ADC for a single-channel, single-conversion that is triggered
by user. This means each conversion will need to be manually started. We will not use ADCBUSYas we
will monitor the status of the conversion using the ADCIFG0. Within ADCCTL2 we will set the resolution
to 12-bits using ADCRES. We will use the default values for ADCPDIVx (no clock division), ADCDF (data
formatted as unsigned binary), and ADCSR (support for sample rates up to ~200 ksps). Within
ADCMCTL0 we will set the ADC input channel to A2. We will accept the default values for ADCSREFx,
which uses VR+ ¼ VCC and VR� ¼ 0 V.

Fig. 15.10
ADC interrupt vector (ADCIV) register

15.2 ADC Operation on the MSP430FR2355 • 433



Within the main program loop, we will start the conversion by simultaneously asserting ADCENC
and ADCSC in the ADCCTL0 register. After the conversion starts, we will wait in a polling loop until the
conversion is finished by monitoring ADCIFG0. After the conversion completes, we will read the result
from the ADCMEM0. Reading ADCMEM0 will clear ADCIFG0. We will then have logic to set the LEDs
according to the ADC result. Examples 15.1 and 15.2 show this program.

Example 15.1
Reading an analog voltage with the ADC using polling to monitor conversion-complete (part 1)
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Example 15.2
Reading an analog voltage with the ADC using polling to monitor conversion-complete (part 2)
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Let’s now look at how we can use an ADCIFG0 interrupt to read ADCMEM0 when the conversion
completes. Example 15.3 shows the program to accomplish this. Note that this code uses the setup
shown in Example 15.1.

Example 15.3
Reading an analog voltage with the ADC using an IRQ to monitor conversion-complete
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CONCEPT CHECK

CC15.2 Why does the MSP430FR2355 have resolution settings for 8-bit and 10-bit? Isn’t the
12-bit setting always better?

A) The lower resolution settings don’t take as long to perform the conversion, so
they are faster.

B) Some applications have electrical noise that make the lower bits of the ADC
result meaningless since they are always measuring noise.

C) The 8-bit setting can be used in applications where only one byte of data is
desired.

D) All of the above.

Summary

v An ADC is a circuit that converts an analog
voltage into a digital representation.

v An ADC uses a sample-and-hold stage to
charge a capacitor to the same voltage as
the input signal. The capacitor is able to hold
this voltage while a conversion is performed.

v An ADC uses a conversion stage to convert
the sampled voltage into a digital value.

v The resolution of an ADC is the number of
bits (n) that are in the final digital output.

v An ADC will digitize across a programmable
range of input voltages from VR+ to VR�.

v The precision of an ADC is the amount of
voltage that the LSB can represent. This
depends on the input voltage range and
number of bits in the ADC.

v The accuracy of an ADC is always � ½ LSB
of the final answer.

v The sample rate of an ADC represents how
fast it samples the incoming signal. If the
ADC is significantly faster than the input sig-
nal, the digital values can be used to recon-
struct the original input signal.

v The MSP430FR2355 has one ADC core that
can be programmed to have a resolution of
8-bits, 10-bits, or 12-bits. It can also digitize
1 of 16 possible input channels. It also has a
selectable clock source.

v The ADC on the MSP430FR2355 has a vari-
ety of interrupts that can be used to track the
status of the conversion.

Exercise Problems

Section 15.1: Analog-to-Digital
Converters
15.1.1 What is the resolution of a 10-bit ADC?

15.1.2 What is the precision of a 10-bit ADC with an
input voltage range of +5 V?

15.1.3 What is the precision of an 8-bit ADC with an
input voltage range of +3.4 V?

15.1.4 What is the analog input voltage for a 10-bit
ADC with an input voltage range of 5 V if
NADC ¼ 0x00FF?

15.1.5 If the digital output is of a 10-bit ADC with an
input range of +5 V is +1.5 V, what is the range
of voltages that the output could take on (i.e.,
its accuracy)?

Section 15.2: ADC Operation on the
MSP430FR2355
15.2.1 How many input channels does the ADC on

the MSP430FR2355 have?

15.2.2 Howmany of the input channels of the ADC on
the MSP430FR2355 can come from ports?

15.2.3 How many resolution settings does the ADC
on the MSP430FR2355 have?

15.2.4 What happens to ADCIFG0 when ADCMEM0
is read?

15.2.5 What is a more efficient way to wait for the ADC
conversion to complete than polling the
ADCIFG0 flag?
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Chapter 16: The Clock System
This chapter looks at the clock system (CS) of the MSP430FR2355 [1–3, 14]. The CS generates the

internal clocks that are used by the CPU, memory, and peripherals. The CS includes on-chip oscillators
and support for external clock sources. The CS generates multiple clock sources that can be used to
drive the peripherals at different frequencies than the CPU to optimize performance and reduce power.
This chapter gives an overview of the clock system on the MSP430FR2355 and how to design a program
in C to change settings from its default configuration at power up.

Learning Outcomes—After completing this chapter you will be able to:

16.1 Describe the basic concept of MSP430FR2355’s clock system.
16.2 Design programs that configures the MSP430FR2355’s clock system in C.

16.1 Overview of the MSP430FR2355 Clock System

The CS generates the various clocks that are used by the CPU, memory, and peripherals. The
MSP430 has two CS modes, basic and enhanced. The enhanced mode provides more options for clock
sources and frequency values than basic mode. The MSP430FR2355 implements the enhanced CS
mode so the material is this chapter is relative to that particular mode. If using a different MSP430 MCU,
consult the device-specific data sheet to determine the features of the device’s clock system.

The MSP430FR2355 contains four on-chip oscillators and supports one external clock source that
can be configured in either high frequency (HF) and low frequency (LF) mode. From these sources the
CS creates a master clock (MCLK), a subsystem master clock (SMCLK), and an auxiliary clock (ACLK)
that are used by the CPU, memory, and peripherals. The CS has the ability create an abundant number
of clock rates for these clock sources through frequency dividers and multipliers.

16.1.1 Internal Very Low-Power Low-Frequency Oscillator (VLO)

VLO is a ~10 kHz, on-chip oscillator suited for low-power operation. In the MSP430 documentation,
the oscillator itself is given the name VLO while the signal that comes from the oscillator is called
VLOCLK; however, throughout the data sheets, the two names are often used interchangeably. VLO can
be used for MCLK, SMCLK, and ACLK. VLO is appropriate for extremely low-power operation that does
not require an accurate time base.

16.1.2 Internal Trimmed Low-Frequency Reference Oscillator (REFO)

REFO is a 32.768 kHz, on-chip oscillator. This oscillator is trimmed, meaning that the manufacturer
calibrates the oscillator during final test to provide a very accurate frequency (�3.5%). In the MSP430
documentation, the oscillator itself is given the name REFO while the signal that comes from the
oscillator is called REFOCLK. REFO can be used for MCLK, SMCLK, and ACLK. REFO is appropriate
when a slower, yet accurate, time base is needed.

16.1.3 External XT1 Oscillator (XT1)

The MSP430FR2355 can accept an external clock signal through its XIN and XOUT pins. On the
MSP430FR2355, XIN and XOUTare tertiary functions for port 2.7 and port 2.6, respectively. As such, in
order to use them as inputs the P2SEL1:P2SEL0 bits must be configured. By default, the pins are
configured as digital I/O so XT1 is disabled.
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When in LF mode, XT1 must be driven with an off-chip, 32.768 kHz watch crystal. The XIN and
XOUT pins are connected to either side of the crystal. When in HF mode, the XIN pin can be driven with
an off-chip ceramic oscillator at frequencies higher than 32.768 kHz. Note that XT1 is either in LF or HF
mode at any time, not both. Within the MCU there are a variety of settings that can be configured on the
incoming signal before it is used as a source for other systems within the CS. XT1 can be used to drive
MCLK, SMCLK, and ACLK. When using XT1 for ACLK in HF mode, there is an additional divider block
that can be used to divide down the incoming signal to ~32 kHz.

16.1.4 Internal Digitally Controlled Oscillator (DCO)

The DCO is an on-chip, trimmed, and programmable oscillator with a frequency that can be
configured with software. The DCO can produce frequencies of 1, 2, 4, 8, 12, 16, 20, and 24 MHz for
use by MCLK and SMCLK. The DCO can run in two different configurations. The first is an open loop,
non-stabilized configuration. In this configuration, the DCO simply attempts to create a clock that is close
to the desired frequency based on the user’s configuration settings; however, it has the potential for the
frequency to shift over time due to temperature and voltage variations. The second configuration is using
a frequency locked loop (FLL) that implements a feedback loop to actively mitigate frequency shifting by
stabilizing (or locking) the DCO to a reference clock. In the MSP430 documentation, the oscillator itself is
given the name DCO while the signal that comes from the oscillator is called DCOCLK. DCOCLK goes
through a final divider stage before being able to be used as MCLK and SMCLK, so the output of the
DCO that is used is a signal called DCOCLKDIV. Figure 16.1 shows the DCO block diagram.

Fig. 16.1
Frequency locked loop (FLL) block diagram and configuration
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By default, the DCO is in the FLL configuration. The basic concept of the FLL is that a feedback loop
attempts to keep the DCOCLK at the specified frequency by continually updating the 9� control bits of
the DCO (which are also calledDCO). The output of the DCO is fed back to an FLL integrator (after going
through multiple divider stages). The FLL integrator compares the feedback signal (the “�” input of the
FLL Integrator in Fig. 16.1) to the reference clock (the “+” input of the FLL Integrator in Fig. 16.1) and
attempts to make them the same frequency by continuously adjusting the DCO control bits. Since the
feedback signal from DCO goes through divider stages to create a slower clock that is fed into the
integrator, the DCOCLK signal itself can be much higher than FLLREFCLK. This is how the DCO system
can create clock frequencies up to 24 MHz while using a FLLREFCLK that is as slow as 32.768 kHz.

The DCO on the MSP430FR2355 can use either REFO or XT1 as FLLREFCLK and has the ability
to divide down the reference clock prior to going to the integrator. By default, the REFCLK comes from
XT1. However, this depends on XT1 being enabled manually by altering the port function select bits for
its external pins. If the port function select bits are left in their default digital I/O mode, the REFO clock is
automatically selected as the reference.

There are a large number of control bits for the DCO, many of which are disabled upon reset. The
most basic control of the DCO frequency comes from using the DCORange Select (DCORSEL) bits and
the FLLD and FLLN dividers within the feedback loop. The 3 bits of DCORSEL put the DCO frequency
(DCOCLK) into one of 8� frequency ranges. Each range is around the 8� target frequencies of the
MSP430FR2355 (i.e., 1, 2, 4, 8, 12, 16, 20, and 24 MHz). However, the DCO is not stabilized, or locked,
to the final frequency until the dividers are setup to produce the correct control frequency that is as close
to FLLREFCLK as possible. There are two dividers that set the frequency that is sent back to the
integrator. The first is the FLL loop divider (FLLD), and the second is the FLLN divider. The FLLD and
FLLD dividers should divide down DCOCLK to get as close to the reference clock as possible. From
there, the integrator begins continuously altering the 9� DCO control bits to make the feedback signal
match the reference clock. The 9� control bits give the ability to divide each DCORSEL range into
512 separate sub-ranges, or taps, that can be chosen in order to get the feedback signal as close to the
reference frequency as possible. Once the two clock signals are as close as they can possible be, the
FLL is said to be locked and it will produce a constant DCOCLK and DCOCLKDIV signal that can be
used as MCLK and SMCLK thereafter. As an example of how the DCO FLL works, let’s consider the
default configuration of the system upon reset shown in Fig. 16.2.

16.1 Overview of the MSP430FR2355 Clock System • 441



The frequency of DCOCLK can be found by multiplying the REFCLK by the 3� divider ratios in the
FLL. In the default configuration shown in Fig. 16.2, DCOCLK¼ ( fREFCLK � FLLREFDIV� (FLLN + 1)�
FLLD) ¼ (32.768 k � 1 � 32 � 2) ¼ 2 MHz. Note that in this calculation we are using the value of the
divider, not the actual settings of the control bits (i.e., setting FLLD to a value of 100b means divide-by-16
so we use 16 in this calculation).

The DCO contains signals that alert the user if frequency lock is lost. The FLLUNLOCK bits are
continuously updated to indicate if the FLL is locked or if DCOCLK is currently too high or too low.

The DCO also contains amodulator (disabled by default) that can be used to achieve an even more
accurate frequency than the default FLL configuration. In the case where the final frequency desired for
DCOCLK falls between two of the DCO tap values, the modulator can be used to continuously toggle
back and forth between the two frequency taps to give an average frequency that is directly between the
taps. The modulator is enabled by the DISMOD bit. When enabled, the FLL integrator automatically
controls both the DCO and MOD bits.

If it is desired to run the DCO in an open-loop configuration (not recommended), there are additional
control bits that can be used to adjust the DCOCLK frequency. First, the FLL can be disabled by setting
either the SCG0 or SCG1 bits in the SR. When the FLL is disabled, the DCO operates based solely on its

Fig. 16.2
DCO default configuration
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configuration settings instead of using active control. In the open loop configuration, the DCO bits can be
configured manually by software. An additional setting called DCO frequency trim (DCOFTRIM) can be
enabled using DCOFTRIMEN and provides a course adjustment of the DCOCLK frequency in 8� steps
within the DCORSEL. The DCOFTRIM can be thought of as a course turning while the DCO bits provide
a fine tuning.

While there are an abundant number of settings for the DCO, the most minimal configuration of
DCOCLK and DCOCLKDIV comes from simply adjusting DCORSEL, FLLD, and FLLN and using the
default source for FLLREFCLK (REFO). Table 16.1 gives some example configuration values to achieve
each of the clock frequencies supported in the MSP430FR2355 using as many default settings as
possible.

16.1.5 Internal High-Frequency Oscillator (MODCLK)

MODCLK is an on-chip, 5 MHz oscillator. MODCLK is only an option for the ADC and I2C
peripherals. In the MSP430 documentation, the oscillator itself is given the names MODO or MODOSC
while the signal that comes from the oscillator is called MODCLK.

16.1.6 Master Clock (MCLK)

MCLK is the clock source for the CPU, memory, digital I/O, interrupt system, CRC, and hardware
multiplier. The source of MCLK is selectable from either REFOCLK, DCOCLKDIV, XT1CLK, or VLOCLK.
MCLK can be pre-divided by an MCLK divider stage. MCLK is generally the fastest clock in the MCU.

Table 16.1
DCO settings to achieve supported MCLK frequencies
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16.1.7 Subsystem Master Clock (SMCLK)

SMCLK is a clock option for peripherals that can operate independently from the CPU such as
timers, eUSCIs, and the ADC. SMCLK is always derived from MCLK and can be pre-divided by an
SMCLK divider stage. Figure 16.3 gives the block diagram for the MCLK and SMCLK generation within
the CS.

16.1.8 Auxiliary Clock (ACLK)

ACLK can be used for peripherals that operate independent from the CPU such as timers, eUSCIs,
and the ADC. ACLK is appropriate when a peripheral requires a low-frequency, but accurate clock. The
source of ACLK is software selectable from either VLO, REFO, or XT1. The frequency of ACLK is
generally 32.768 kHz, but it is possible to operate it as low as 10 kHz when selecting VLO as the source
or as high as 40 kHz when using XT1 as the source. Since XT1 in HF mode can accept a clock source
that has a frequency higher than 40 kHz for use as MCLK, a divider stage is included in order to reduce
the version of XT1 that is used for ACLK. The ACLK source divider can be configured to reduce XT1 in
HF mode to be within the 10–40 kHz range. The device specific data sheets give guidance on this
situation including the recommended external ceramic clock oscillators to use with the corresponding
divider settings. When XT1 is connected direct to a 32.768 kHz watch crystal and in LF mode, the ACLK
source divider is set to 1 and not configurable. Figure 16.4 gives the block diagram for the ACLK
generation within the CS.

Fig. 16.3
Master clock (MCLK) overview
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When using an external watch crystal for ACLK, the XIN and XOUT pins are connected to either side
of the external crystal with load capacitors (CL1 and CL2) connected on each pin to ground. The value of
the load capacitors to use is found in the device-specific data sheet. The MSP430FR2355 LaunchPad™
board contains a 32.768 kHz watch crystal for as ACLK or MCLK/SMCLK through XIN and XOUT.
Figure 16.5 shows the crystal details for the LaunchPad™ board.

Fig. 16.4
Auxiliary clock (MCLK) configuration
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16.1.9 Default Settings on Power-Up

Upon startup, the default frequency forMCLK is 1MHz and is sourced from the DCO. This is a result
of the default configuration for the SELMS multiplexer choosing DCOCLKDIV to drive MCLK and the
DIVM divider defaulting to divide by 1. The default settings for the DCO puts the DCOCLK into the 2 MHz
range with a FLLREF clock source of REFO (after XT1 is determined to be disabled because the port
function select bits default to digital I/O mode), a FLLD setting of divide by 2, and a FLLN divider of
(31 + 1). Upon startup, the default frequency for SMCLK is 1 MHz and is sourced from MCLK. This is a
result of the MCLK default frequency being 1 MHz (sourced from the DCO) and the DIVS divider
defaulting to divide-by-1. Upon startup, the default frequency for ACLK is 32.768 kHz and is sourced
from REFO.

Fig. 16.5
Using an external crystal oscillator for ACLK
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16.1.10 CS Configuration Registers

The complete list of CS registers on the MSP430FR2355 MCU is as follows:

• Clock system control register 0 (CSCTL0).

• Clock system control register 1 (CSCTL1).

• Clock system control register 2 (CSCTL2).

• Clock system control register 3 (CSCTL3).

• Clock system control register 4 (CSCTL4).

• Clock system control register 5 (CSCTL5).

• Clock system control register 6 (CSCTL6).

• Clock system control register 7 (CSCTL7).

• Clock system control register 8 (CSCTL8).

All configuration settings for the CS are given in Figs. 16.6, 16.7, 16.8, 16.9, 16.10, 16.11, 16.12,
16.13, and 16.14.

Fig. 16.6
Clock system control register 0 (CSCTL0)
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Fig. 16.7
Clock system control register 1 (CSCTL1)
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Fig. 16.8
Clock system control register 2 (CSCTL2)
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Fig. 16.9
Clock system control register 3 (CSCTL3)
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Fig. 16.10
Clock system control register 4 (CSCTL4)
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Fig. 16.11
Clock system control register 5 (CSCTL5)
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Fig. 16.12
Clock system control register 6 (CSCTL6)
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Fig. 16.13
Clock system control register 7 (CSCTL7)
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CONCEPT CHECK

CC16.1 Why not just run the entire MCU off a single clock?

A) Peripherals, especially timers, often need to run at much slower clock rates
than the CPU in order to generate/track timing events that are measured in
seconds, minutes, and hours.

B) Using different clocks allows portions of the MCU to be turned off to save
power.

C) An MCU can be used in many different applications including some that
require high performance and some that require low power. Having clocks
that can run at both high and low rates allows the same MCU to meet the
demand of many applications.

D) Add of the above.

Fig. 16.14
Clock system control register 8 (CSCTL8)

16.1 Overview of the MSP430FR2355 Clock System • 455



16.2 Configuring the CS on the MSP430FR2355

This section gives a few examples of how to configure the CS system on the MSP430FR2355
LaunchPad™. Let’ s begin by observing the 3� main clocks to measure their frequencies. Examples
16.1 and 16.2 show how to route MCLK, SMCLK, and ACLK to port pins of the MCU for observation with
a logic analyzer to measure their frequencies.

Example 16.1
Routing MCLK, SMCLK, and ACLK to pins to measure their frequencies (part 1)
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Next, let’s see how we can change the clock sources for MCLK and ACLK in addition to changing
the divider setting for SMCLK. Example 16.3 shows how to change the source for MCLK to REFO and
the source for ACLK to VLO and divide SMCLK by 2.

Example 16.2
Routing MCLK, SMCLK, and ACLK to pins to measure their frequencies (part 2)
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Example 16.3
Changing the sources for MCLK and ACLK and dividing SMCLK by 2
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Now let’s look at how we can change the DCO settings to get a different MCLK frequency. Example
16.4 shows how to set MCLK to 8 MHz using the DCO settings values from Table 16.1. In this example
the DCO is put into its 8 MHz range using DCORSEL, FLLD is set to divide-by-1, and FLLN is set to 244.
These settings divide the 8 MHz clock down to ~32 kHz for the feedback signal that is fed into the FLL
integrator to be stabilized to the FLLREFCLK of 32.768 kHz (REFO).

Example 16.4
Changing MCLK to 8 MHz using the DCO and FLL
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CONCEPT CHECK

CC16.2 Why is it a good idea to observe the clocks with a logic analyzer or oscilloscope when
determining the configuration settings of the CS?

A) It allows you to verify that the settings you are using are giving you the
desired clock rates.

Summary

v The clock system generates the clocks used
by the MCU from a variety of on-chip and
off-chip oscillators. Many different clock
frequencies can be achieved by using differ-
ent oscillator sources and different configura-
tion settings.

v The MSP430 has two CS modes: basic and
enhanced. The enhanced mode provides
more clock source and frequency options.
The MSP430FR2355 implements the CS
enhanced mode.

v The CS contains 4� on-chip oscillators:
REFO (32.768 kHz), VLO (10 kHz), DCO
(1, 2, 4, 8, 12, 16, 20, and 24 MHz), and
MODO (5 MHz).

v The DCO contains a frequency locked loop
(FLL) configuration that allows it to stabilize
its output to a reference clock in order to
produce a stable clock signal for MCLK.

v The CS supports an off-chip oscillator as the
source for XT1. XT1 can be put into LF mode
where it is driven with a 32.768 kHz watch
crystal or into HF mode where it is driven with
a higher frequency oscillator.

v The CS produces three primary clocks for
use by the MCU: master clock (MCLK), sub-
system master clock (SMCLK), and auxiliary
clock (ACLK).

v MCLK’s primary function is to drive the CPU
and memory.

v SMCLK and ACLK’s primary functions are to
drive peripherals.

v MCLK can be sourced from VLO, REFO,
DCO, and XT1.

v ACLK can be sourced from REFO, VLO, and
XT1.

v SMCLK is always sourced from MCLK, but it
can be divided down further using its own
divider stage.

v ACLK’s nominal frequency is 32.768 kHz,
but it can go as low as 10 kHz and as high
as 40 kHz.

v If using XT1 in HF mode for ACLK, the input
frequency must be divided down to get it
within the 10–40 kHz range allowed for
ACLK.

Exercise Problems

Section 16.1: Overview of the
MSP430FR2355 Clock System
16.1.1 Does the MSP430FR2355 implement the CS

basic mode or enhanced mode?

16.1.2 What is the nominal frequency of REFO?

16.1.3 What is the nominal frequency of VLO?

16.1.4 What is the nominal frequency of MODO?

16.1.5 What are the nominal frequencies supported
for MCLK?

16.1.6 What is the nominal frequency of ACLK?

16.1.7 What configuration bits set the source for
MCLK?

16.1.8 What configuration bits set the source for
ACLK?

16.1.9 If XT1 is unavailable for the FLLREFCLK clock,
what source does the DCO default to?

16.1.10 What can MODO be used for?

Section 16.2: Configuring the CS on the
MSP430FR2355
16.2.1 Can the primary CS clock outputs be routed to

I/O pins on the MCU?

16.2.2 What is an easily accessible pin on the
MSP430FR2355 LaunchPad™ board to
observe MCLK?
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16.2.3 What is an easily accessible pin on the
MSP430FR2355 LaunchPad™ board to
observe SMCLK?

16.2.4 What is an easily accessible pin on the
MSP430FR2355 LaunchPad™ board to
observe ACLK?

16.2.5 When a configuration field holds a default
value that is not zero, what step must be
taken prior to setting a new value?
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Chapter 17: Low Power Modes
This chapter looks at the low power modes available on the MSP430FR2355 [1–3, 14]. The

MSP4302355 contains a variety of low power modes that achieve decreasing levels of power consump-
tion by turning off subsystems within the MCU. This chapter gives an overview of the available low power
modes including the control signals used to enter and wake from these modes.

Learning Outcomes—After completing this chapter, you will be able to:

17.1 Describe the basic concept of MSP430FR2355’s low power modes.

17.1 Overview of the MSP430FR2355’s Low Power Modes

The general concept of low power mode on the MSP430 is to turn off clocks and supply voltages to
subsystems within the MCU. The more systems that are turned off, the less power the MCU will use. The
MSP430FR2355 contains 5� low power modes that are shown in Table 17.1.

Table 17.1
Low power modes on the MSP430FR2355

# The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. J. LaMeres, Embedded Systems Design using the MSP430FR2355 LaunchPad™,
https://doi.org/10.1007/978-3-031-20888-1_17
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LPM0, LPM3, and LPM4 are entered using the CPUOFF, OSCOFF, SCG0, and SCG1 bits in the
SR. Wake up from these three modes is possible through all enabled interrupts. Keeping these control
bits in the SR is advantageous because they are stacked during an ISR. After executing the current ISR,
the SR is restored from the stack and the MCU returns to the previously configured low power mode.

Entering LPM3.5 and LPM4.5 involves also disabling the power management module on the
MSP430. When in these ultralow power modes, all RAM and register contents are lost; however, the
digital I/O pins are locked at their current state. Wake up from LPM3.5 is possible from a power cycle, a
reset, an RTC event, an LF crystal fault, or from an external pin NMI. Wake up from LPM4.5 is only
possible from a power cycle, a reset, or from an external pin NMI.

17.1.1 Active Mode (AM)

Active mode (AM) on the MSP430FR2355 is when everything in the MCU is enabled and available
for full speed operation (up to 24 MHz). Remember that on reset, the digital I/O must be taken out of its
default low power inhibit mode. This is accomplished by clearing the LOCKLPM5 bit in the PM5CTL0
register.

17.1.2 Low Power Mode 0 (LPM0): CPU OFF

Low power mode 0 (LPM0) is called the CPU offmode. This mode disables MCLK, which disables
the CPU but still allows SMCLK to run at full speed (up to 24 MHz) and allows full functionality of the
CS. All peripherals can be used in this mode and the FRAM and RAM continue to receive power; thus, no
data is lost and wake up is instant. To enter LPM0, the CPUOFF bit is asserted in the SR. Wake up is
accomplished through any enabled interrupt request.

17.1.3 Low Power Mode 3 (LPM3): Standby

Low power mode 3 (LPM3) is called standby mode. This mode disables MCLK and SMCLK. Any
peripherals that are enabled must use ACLK as their source with a maximum frequency of 40 kHz. Digital
I/O is held at their last state until active mode is restored. Voltage regulation is partially shutdown for
unused peripherals, but the CPU core is still powered. Power is removed from the FRAM, but the RAM is
still powered so no data is lost. Some CS circuitry is disabled including the FLL, DCO, XT1HF, and
MODCLK in order to save additional power. To enter LPM3, the CPUOFF, SCG0, and SCG1 bits are
asserted in the SR. Wake up is accomplished through any enabled interrupt request with a wake-up time
of ~10 μs.

17.1.4 Low Power Mode 4 (LPM4): Off

Low power mode 4 (LPM4) is called offmode. This mode disables all clocks, thus disabling the CPU
core and all peripherals except for the RTC. Digital I/O is held at their last state until active mode is
restored. Power is removed from the FRAM, but the RAM is still powered so no data is lost. To enter
LPM4, the CPUOFF, OSCOFF, SCG0, and SCG1 bits are asserted in the SR. Wake up is accomplished
through either an edge on the NMI pin (if enabled) or an RTC event (if enabled) with a wake-up time of
~10 μs.
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17.1.5 Low Power Mode 3.5 (LPM3.5): RTC Only

Low power mode 3.5 (LPM3.5) is called RTC Only mode. This mode disables all clocks and all
peripherals except for the RTC peripheral running off of either VLOCLK or XT1LFCLK (max frequency
40 kHz). All other subsystems are powered down and there is no memory retention. To enter LPM3.5, the
CPUOFF, OSCOFF, SCG0, and SCG1 bits are asserted in the SR in addition to disabling the power
management module by setting the PMMREGOFF bit in the PMMCTL0 register. If any part of the RTC is
enabled, then the MCU knows to go into LPM3.5 and not LPM4.5. Wake up from LPM3.5 causes a full
system reset and takes the longest time of any low power mode to wake from (~350 μs). Wake up from
LPM3.5 is accomplished through a power cycle, a reset, an LF crystal fault, an edge on an NMI pin
(if enabled), or an RTC event.

17.1.6 Low Power Mode 4.5 (LPM4.5): Shutdown

Low power mode 4.5 (LPM4.5) is called shutdown mode. This mode is identical to LPM3.5 except
no part of the RTC is enabled. All subsystems are powered down, and there is no memory retention. To
enter LPM4.5, the CPUOFF, OSCOFF, SCG0, and SCG1 bits are asserted in the SR in addition to
disabling the power management module by setting the PMMREGOFF bit in the PMMCTL0 register. If no
part of the RTC is enabled, then the MCU knows to go into LPM4.5 and not LPM3.5. Wake up from
LPM4.5 causes a full system reset and takes the longest time of any low power mode to wake from
(~350 μs). Wake up from LPM4.5 is accomplished through a power cycle, a reset, an LF crystal fault, or
an edge on an NMI pin (if enabled).

17.1.7 Example of Putting the MSP430FR2355 into Low Power Mode

In Example 15.3, we setup the ADC to read from an external voltage and used a polling loop in the
main program to ensure that the ADC conversion start was only triggered once the prior conversion was
complete. A more practical way to accomplish this logic is to instead start the conversion and then put the
CPU into one of the low power modes that still allows the ADC to run. Let’s look at an example of where
instead of polling the ADC conversion complete flag, we start the conversion and then enter LPM0. Once
the conversion completes, the ADC will trigger and IRQ that will bring the MCU out of LPM0 and execute
the ISR. After the ISR, the program will return to main, start the conversion, and then re-enter LPM0
continuously. We enter LPM0 by asserting the CPUOFF bit in the SR. Example 17.1 shows how to use
LPM instead of a polling loop to control when the next conversion is triggered.
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Example 17.1
Reading an analog voltage with the ADC using an IRQ and low power mode
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CONCEPT CHECK

CC17.1 LPM4.5 seems excessive. What kind of application would want an MCU to be completely
turned off until an external event occurs?

A) A battery powered application where saving power is paramount.

B) An application where events are very infrequency (i.e., days or weeks).

C) An application where no data memory is needed to store information. The
MCU just wakes up, runs a stand-alone routine, and then powers down.

D) Add of the above.

Summary

v TheMSP430FR2355 supports a range of low
power modes that give a decreasing levels of
power consumption.

v The more aggressive the low power mode,
the more items are turned off. This leads to a
longer wakeup time and fewer options for
how it is awoken.

v LPM0 is called CPU off mode and simply
turns off MCLK to the CPU. Wakeup is
instant.

v LPM3 is called Standby mode and turns off
both MCLK and SMCLK. Any peripherals

that are used must run off of ACLK with a
max frequency of 40 kHz. Wakeup is ~10 μs.

v LPM4 is called Off mode and turns off every-
thing except power to the RAM and the RTC.
Wakeup is ~10 μs.

v LPM3.5 is called RTC only mode and turns
off all clocks and powers down everything
except the RTC. Wakeup is ~350 μs.

v LPM4.5 is called Shutdown mode and turns
off all clocks and powers down everything.
Wakeup is ~350 μs.

Exercise Problems

Section 17.1: Overview of the
MSP430FR2355’s Low Power Modes
17.1.1 How do you enter LPM0?

17.1.2 What is turned off during LPM0?

17.1.3 How do you wake from LPM0?

17.1.4 How long does it take to wake from LPM0?

17.1.5 How do you enter LPM3?

17.1.6 What is turned off during LPM3?

17.1.7 How do you wake from LPM3?

17.1.8 How long does it take to wake from LPM3?

17.1.9 How do you enter LPM4?

17.1.10 What is turned off during LPM4?

17.1.11 How do you wake from LPM4?

17.1.12 How long does it take to wake from LPM4?

17.1.13 How do you enter LPM3.5?

17.1.14 What is turned off during LPM3.5?

17.1.15 How do you wake from LPM3.5?

17.1.16 How long does it take to wake from LPM3.5?

17.1.17 How do you enter LPM4.5?

17.1.18 What is turned off during LPM4.5?

17.1.19 How do you wake from LPM4.5?

17.1.20 How long does it take to wake from LPM4.5?
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Appendix A: Concept Check Solutions

v CC 1.1 A

v CC 2.1.1 C
v CC 2.1.2 D
v CC 2.1.3 D
v CC 2.1.4 A
v CC 2.2.1 A
v CC 2.2.2 C
v CC 2.2.3(A) D
v CC 2.2.3(B) B
v CC 2.2.4(A) C
v CC 2.2.4(B) C
v CC 2.2.4(C) B
v CC 2.3.1 B
v CC 2.3.2 A
v CC 2.4.1 D
v CC 2.4.2(A) C
v CC 2.4.2(B) B
v CC 2.4.3 A

v CC 3.1 A
v CC 3.2 A
v CC 3.3 D

v CC 4.1 A
v CC 4.2 D
v CC 4.3 D

v CC 5.1 B
v CC 5.2 D
v CC 5.3 C

v CC 6.1 A
v CC 6.2 B
v CC 6.3 A
v CC 6.4 B
v CC 6.5 B
v CC 6.6 A
v CC 6.7 A

v CC 7.1 B
v CC 7.2 B
v CC 7.3 A
v CC 7.4 C
v CC 7.5 A

v CC 8.1 A
v CC 8.2 A
v CC 8.3 A
v CC 8.4 D

v CC 9.1 B
v CC 9.2 A
v CC 9.3 B

v CC 10.1 A
v CC 10.2 B

v CC 11.1 C
v CC 11.2 C

v CC 12.1 D
v CC 12.2 B
v CC 12.3 A
v CC 12.4 A
v CC 12.5 D

v CC 13.1 A
v CC 13.2 D
v CC 13.3 A

v CC 14.1 A
v CC 14.2 B
v CC 14.3 A

v CC 15.1 A
v CC 15.2 D

v CC 16.1 D
v CC 16.2 A

v CC 17.1 D
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316–318, 335, 338, 366, 419, 421, 439, 440, 444–
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Adder/subtractor circuit, 69
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70, 84, 86, 111, 114, 123, 126–128, 146, 150, 151,
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426, 457, 465

Addition with carry (ADDC), 194
Addressing modes, 171, 173, 181, 185, 203
Analog to digital converters (ADC), 140, 147, 150–152,

257, 263, 417, 423–437, 443, 444, 465, 466
Analog to digital converters (ADC) on the

MSP430FR2355, 426–436
AND (AND), 30, 32, 34, 38, 49, 64, 125, 137, 199, 200,

205, 312
Arithmetic instructions, 191–198, 210, 324
Arithmetic logic unit (ALU), 125, 126, 128, 129, 131–133,

137, 138, 150, 164, 191, 195, 210
Arithmetic operations, 206, 307
ASCII, 345, 346, 419, 421
Assembler directives, 153–157, 168, 247, 258, 259, 263,

268, 271
Assembler fields, 153, 154, 158
Assembly language programming, 130
Asynchronous memory, 108
Axioms, 32

logical negation, 32
logical precedence, 32
logical product, 32
logical sum, 32
logical values, 32

B

Base, 8
Base conversions, 12–19

binary to decimal, 14
binary to hexadecimal, 18
decimal to binary, 16
decimal to decimal, 12
decimal to hexadecimal, 17
hexadecimal to binary, 19
hexadecimal to decimal, 14

Basic gates, 29–32
Baud rates, 327, 330, 332, 333, 335–339, 342, 355, 366,

418–421

Binary addition, 19–21, 63, 192, 195. See also
Addition (ADD)

Binary number system, 10
Binary subtraction, 21, 68. See also Subtraction (SUB)
BIT (BIT), 205
Bit clear (BIC), 137, 191, 203, 204, 211, 235, 307
Bit period assignment, 327, 330
Bit set (BIS), 191, 203, 204, 211, 233, 307
Bit set/clear instructions, 191, 307
Bitwise logic operators, 307–309
Boolean algebra, 31–34, 38, 54, 114, 115
Borrows, 21, 22, 27, 68, 114, 116, 191, 195, 196, 210
Branch always (BR), 327
Bus configurations, 360
Bus system, 121, 125, 126, 140, 150, 151
Byte, 10

C

Calculating actual analog voltage of sample, 424
Call (CALL), 251
Canonical product of sums, 37
Canonical sum of products, 34–37, 114, 116, 117
Carry, 19, 20, 23, 27, 64–68, 114, 116, 124, 125, 128,

129, 132, 150, 191, 193, 195, 208, 210, 215, 229
Case sensitivity, 158
C constructs on the MSP430, 313
Central processing unit, 2, 97, 121, 123, 131
Classes of instructions, 126, 127, 132
Clock system (CS), 140, 147, 150, 419, 439–460
Combinational logic, 7, 29–71, 84, 86, 89, 93–95, 115,

116, 121, 191, 210
Combinational logic synthesis, 34–55
Compare (CMP), 2, 3, 139, 205, 220, 222–224, 229, 230,

248, 277, 278, 289–291, 293, 297, 298, 300, 322, 324
Compiler, 129, 132, 133, 302, 313, 324
Computer hardware, 121–125, 131–133
Computer software, 121, 126–133
Computer system design

central processing unit, 123–125
condition code register, 137
data memory, 123
data path, 136
hardware, 122
program memory, 125
registers, 136
software, 126

Computer systems, 2, 27, 104, 110–112, 121–132
135, 171

Conditional jumps, 213, 215–220, 222–224, 229
Conjunction (^), 32
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Control unit, 97–99, 121, 123, 124, 132, 133, 210
Conversion stage, 423, 437
Converting between bases. See Base conversions
Counters, 99

designing by hand, 99
Cross-coupled inverter pair, 71

D

Data memory, 2, 121, 123–125, 131, 132, 136, 137, 140,
147, 150–152, 154, 155, 160, 168, 175, 177, 247, 248,
251, 253, 254, 302

Data movement instruction (MOV), 127, 158, 168, 172,
186–189

Debugger, 130, 132, 133, 153, 162–169, 171, 238
Decimal number system, 10
Decoders, 57
Decrement (DEC), 125, 137, 198, 210, 221, 222, 304,

307, 324
Decrement double (DECB), 210
D-flip-flop, 81
Digit, 9
Digital I/O system, 139, 147, 150–152, 231–245, 263,

301, 310–313, 324, 325, 339, 439, 441, 443, 446, 464
Digital input programming, 240–243, 246
Digitally controlled oscillator (DCO), 440–442
Digital output programming, 237–239, 245
Digital-to-analog converter (DACs), 2, 140, 147, 257, 263
Digit notation, 9
D latch, 80
Duplex, 328
Disjunction (_), 32
Don’t cares (X), 53

E

Embedded computers, 1–3, 5, 130, 301, 423
Embedded systems, 1–5, 7, 233
Enabling, 234, 257, 258, 311, 316, 324, 379, 427
Enabling after reset, 235, 236
EUSCIs, 147, 152, 327, 332, 333, 395, 444

F

Finite state machines (FSM), 7, 86–103, 115, 118, 121,
123, 124
binary state encoding, 90
design examples by hand, 97
design process, 96
final logic diagram, 95
gray code state encoding, 91
introduction, 86
next state logic, 93

one-hot state encoding, 91
output logic, 94
state diagram, 87
state memory, 90
state transition table, 88
state variables, 92
synthesis by hand, 89

Firmware, 2, 5
Flags, 124, 132, 137, 150, 164, 191, 195, 196, 200, 204,

205, 210, 213, 229, 255–257, 261, 263, 265–272,
279, 289, 291, 298, 313, 314, 324, 339, 351, 353, 357,
367, 370, 372, 379, 385, 402, 410, 413, 417, 427, 431,
437, 465

FLASH memory, 111
NAND-FLASH, 111
NOR-FLASH, 111

Flow chart, 130, 213, 225–230, 240, 262
For() loops, 213, 220, 221, 229, 304
Framing, 53, 329, 338, 359, 366, 418, 421
Full adders, 65

G

Gates, 29
General-purpose computer, 1, 2, 5
Global, 154, 160, 169, 248, 254, 257, 263, 265, 267, 271,

279, 313, 370

H

Half adders, 64
Half-duplex, 328, 385, 418, 420
Hexadecimal number system, 10

I

I2C on the MSP430FR2355, 395–418
I2C protocol, 385–395
I2C slave operation, 417–418
Identifiers, 153, 157, 158, 168, 169, 171
If/else statements, 223, 224, 305, 324
Immediate mode, 171, 173, 174, 185, 187, 203, 213
Implementing for() loops in assembly, 221–222
Implementing if/else statements in assembly, 223
Implementing switch/case statements in assembly, 224
Implementing while() loops in assembly, 220–221
Increment (INC), 10, 24, 125, 127–129, 137, 198, 210,

213, 221, 222, 273, 298, 299, 304, 307, 324, 391
Increment double (INCD), 198, 210
Indexed mode, 183, 185, 186, 189
Indirect autoincrement mode, 171, 181, 182, 186, 188
Indirect register mode, 171, 179–181, 183, 186, 188
Input/output (I/O) ports, 125, 138–140, 147, 152, 231,

263, 338
Input/output (I/O) system, 231–236, 301, 339
Input range, 423, 425, 437
Instruction set, 121, 126, 131, 142–144, 151, 218, 220
Instruction statements, 153, 154, 160, 168
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Inter-integrated circuit bus (I2C), 139, 327, 385–418
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Invert (INV), 69, 114, 137, 211, 332
I/O ports, 125, 132, 139, 147, 151, 152, 231, 244, 263

J

Jump always (JMP), 213, 214, 229, 302
Jump when carry clear (JNC), 216
Jump when carry set (JC), 216
Jump when greater than or equal to (JGE), 219
Jump when less than (JL), 219
Jump when negative (JN), 218
Jump when not zero (JNZ), 217
Jump when zero (JZ), 217

K

Karnaugh map (K-map), 42
K-map, 42

L

Last-in, first-out (LIFO) storage, 247, 253
LaunchPadTM digital I/O breakout, 232
Least significant bit (LSB), 10
Linker, 130, 132, 133, 157, 158, 259, 302
Literals, 11, 34, 37, 40, 43, 177, 236, 237, 245, 246, 259,

291, 302, 324, 325
Local, 257, 261, 263, 265, 267, 271, 279, 313
Logic instructions, 191, 199–202, 211
Logic minimization, 41–53
Logic synthesis, 34
Low power mode (LPM), 256, 310, 336, 464–466
LPM0, 464, 465, 467
LPM3, 464, 467
LPM3.5, 464, 465, 467
LPM4.5, 464, 465, 467

M

Maskable interrupts, 257, 259, 261–263, 267, 271, 272,
313, 324

Maxterm list (Π), 40, 41, 49, 115, 117
Maxterms, 37, 38, 49, 114, 115
MCLK, 140, 147, 150, 439–441, 443–446, 456–460

464, 467
Mealy machine, 87
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Memory access, 136, 257, 263, 271
Metastability, 72
Microcontrollers, 2, 5, 111, 123, 125, 135
Minimization, 41
Minimization of logic using K-maps, 44
Minterm list, 36, 49, 114, 117
Minterms, 34, 36, 38, 41, 44, 114
Mixed signal processor, 135
Moore machine, 87
Most significant bit (MSB), 10
MSP430 hardware, 135–142, 151
MSI logic, 56–70, 115
MSP430FR2355TPT pinout, 231

N

Negation (Ø), 32
Nested, 223, 224, 261, 262, 271
Nibble, 10
Number systems, 7–29, 31, 114, 116
Numerals, 8
Nyquist sampling theorem, 423

O

Opcodes, 302
Open-drain output, 385, 386
Operands, 124, 127–130, 132, 153, 154, 168, 171, 173,

177, 185, 191, 195, 199, 203, 213, 229, 302
Operating systems, 1–3, 5, 256
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P

Parity, 329, 330, 418
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Pin functionality, 244
Polling, 240–243, 245, 246, 255, 271, 312, 413, 434,

437, 465
Pop (POP) operation, 248, 261
Port direction registers (PxDIR), 233–236, 244, 245, 267,

310, 311, 324
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235, 244, 339, 366, 401
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Radix, 8–10, 12, 13, 18, 19, 21, 114, 116
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Range

two's complement numbers, 24
unsigned numbers, 23, 24

Range of signed numbers, 23–26
Range of unsigned numbers, 23, 24
Real-time operating system (RTOS), 2, 256
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Rotate left through carry (RLC), 206
Rotate right arithmetically (RRA), 206
Rotate operations, 206–209

Rotate right through carry (RRC), 206
RS-232, 332, 419
Rx sampling, 330

S

Sample rates, 423, 430, 433, 437
Sample-and-hold stage, 423, 430, 437
Sections, 7, 22, 25, 29, 56, 71, 97, 104, 106, 127, 157,

158, 160, 168, 169, 199, 220, 233, 236, 237, 257, 259,
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7-segment decoder design by hand, 58
Semiconductor memory, 104
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Sequential logic timing, 84
Serial I/O, 139, 151
Serial peripheral interface (SPI), 139, 147, 150, 327, 332,

338, 359–385, 395–397, 399, 401, 402, 418–421
4-wire mode, 366
3-wire mode, 359

Service routines (ISR), 255, 256, 258, 260–263, 265,
267–269, 271, 272, 280, 284, 293, 313, 314, 316, 324,
325, 353, 407, 464, 465

Servicing, 255, 262, 263
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Simplex, 328, 418
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320, 335, 338, 366, 399, 419, 421, 433, 439–441,
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245, 246, 267, 272

SPI slave transmit enable, 360
SR latch, 72, 75
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Stack overflow, 248, 253, 254, 262
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Status flags, 132, 191, 192, 195, 205, 215, 229, 355, 428
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Subroutine instructions, 251
Subroutines, 166, 225, 247–254, 261, 314
Subtraction (SUB), 7, 21, 22, 27, 70, 114, 126, 150, 191,

195–198, 205, 210, 307, 324
Subtraction with borrow (SUBC), 197
Switch/case statements, 213, 220, 224, 229, 306, 324
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System memory, 136
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Test (TST), 200, 201, 205, 220, 222, 439
Test instructions, 191, 204, 205, 210, 211
Timer captures, 273, 297, 298, 300
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Two's complement arithmetic, 27
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Universal asynchronous receiver/transmitter (UART),
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Vector table, 258, 259, 263, 271, 313, 324–326
VLO, 439, 444, 457, 460
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W

Weight, 12–14, 114, 116
While() loops, 213, 220, 229, 302, 303
Word, 10

X

X - don’t cares, 53
XOR/XNOR gates in K-maps, 54
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